
18 May 2015

1

Chapt. 2 SENG 422 TA Progress Report

(Project Design Course Notes 1)

TA: Philip B. Alipour

2.1. Software Architecture concerns: Choice of design pattern based on the

Performance, Data Type and Entropy of the LSCS system

 The following sketch notes and design will guide you through your

choice of pattern by addressing key concerns in your architecture as

the number of actors increase in population as well as tasks and

hardware/software components:

o Software architectural concerns for the LSCS project, such as

performance, service downtime and severed connection due to timely

access issues, traversing spatial and time for data during sort in

memory/DB, external service DB alternate switch when service, halt,

delay or downtime, real vs. fictitious data report to parse, and who

is the parser or part of a (sub)system as a collective solution.

 What is your solution per concern as you apply a design pattern, which

must satisfy performance goals and criteria (http://www.viewpoints-

and-perspectives.info/home/perspectives/performance-and-

scalability/) in your architecture?

 You may complement the current sketch or fill in the gaps concerning

performance as you may append or revise according to your project plan.

http://www.viewpoints-and-perspectives.info/home/perspectives/performance-and-scalability/
http://www.viewpoints-and-perspectives.info/home/perspectives/performance-and-scalability/
http://www.viewpoints-and-perspectives.info/home/perspectives/performance-and-scalability/

2

3

4

5

2.2. Software Architecture concerns: Hardware/software challenges (data atom

access_update as CRUD database/memory for configurable components in design)

 Some system components such as the DB or on a low level memory, require

a way in partitioning its space and manage/sort data relative to what

is actually being stored/read/written to/from its address (to deal with

the big O algorithm complexity issue of a looping algorithm which is

refreshed when an item is created/updated on a checklist by an actor).

 CRUD is simply explained at

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

 To make your code the most efficient when CRUDing, you need to know the

difference between the times/steps and the level of impact information

could have on the overall system performance and code (a concern

http://en.wikipedia.org/wiki/Separation_of_concerns) e.g.,

T(n)= O(n^2) and O(n).

The aim is to achieve O(n), and in a perfect world, O(n-{1, 2, 3, …})

when the code executes. For example, as depicted below, if an operation

is performed from right-to-left (in the eclipse program for instance,

the memory map is displayed and partitioned from left-to-right), the

little endian distance is shorter than the big endian.

If the relevant contents representing numbers (integer data type) on a

list is stored in the targeted address, yet with extra bits (the way

space is partitioned in your code as you define it), then it inevitably

stores the content line-by-line for the ascending numbers with much

greater distances (accessing the big endian addresses) D. This will

2
0

 Little endian

2
0 Big endian

Relevant contents of your number
value stored in the address

Extra or some complementary data
content of your number: some relevant

some can be sorted and/or can be a
value to be flushed out from the address

The flow of storing the generated
bits/bytes by the program (what

about sorting them?)

D > d

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/Separation_of_concerns

6

impede or slow down the level of code execution i.e., greater

algorithmic complexity or higher O’s.

The aim is to gain minimum distances of d’s rather than D > d which

pertains to bigger O’s (something to avoid or address upon).

And the relation between distance d or D to processing speed or

performance is frequency f of the input/output of data to/from

registers, such that

d*f= ps or processing speed, where

f=1/T(n) and is measured in Hertz (or cycles per second).

 Another issue that could be addressed is changing the flow and order of

your For loops as well as nested loops based on a condition which could

be instead of satisfying long iterations (longer distances) satisfy

shorter ones if possible.

 The proper solution to achieve an optimized code would be typing up a,

e.g. a sorting algorithm like Bubble Sort

(http://en.wikipedia.org/wiki/Bubble_sort) to address O(n2) and satisfy

O(n) levels of execution.

 Another solution is to use lossless data compression or for graphics, a

lossy one as far as vital details of a picture (e.g. from a sequence of

frames) is not lost after decompressing your data. This requires clever

compression means as one converts characters (of ASCII), or pixels in

terms of integers from a vast combination of RGB = 256|R*256|G*256|B =

16.7 million color combinations from a data compression/decompression

table (my MSc thesis covers this where you can access it under

publications section of my website!).

 The timing can be generated and measured for a successful loop series

by the main source file where all LSCS subsystems depend on, and not a

single numbers/characters source code where you are supposed to

generate and sort as a solution (decomposition of source code).

Some notes to consider for your implementation:

 Depending on what type of machine your architecture is applicable

(scalability and dependability attributes of the architecture), being a

64 bit machine, 32 bit, etc. (quite dependent on the little vs. big

endianness hardware architecture) a question can be raised on say two’s

complement, which is a lengthy mathematical discussion to cover,

however, the short version can be explained as hereby exemplified:

https://www.youtube.com/watch?v=SXAr35BiqK8 and

https://www.youtube.com/watch?v=Hof95YlLQk0 (this link also discusses

about the complementary results in different machines as well as

overflow (focus is on operation as well as size. In any case, size is

always an issue, either in a buffer, stack or a long number stored by a

register: “In a computer, the amount by which a calculated value is

greater in magnitude than that which a given register or storage

http://en.wikipedia.org/wiki/Bubble_sort
https://www.youtube.com/watch?v=SXAr35BiqK8
https://www.youtube.com/watch?v=Hof95YlLQk0

7

location can store or represent”

http://en.wikipedia.org/wiki/Arithmetic_overflow)) as a useful concept.

 Also, operands during operations will change the register content when

written in e.g., assembly or C. For instance, what is the difference

between in the order and result of execution by the operators in the

following expression? (What is prioritized in the operation in this

example?):

(2+3)*5 against 2+3*5

 The purpose of push and pop is also of importance during operations.

For instance, in the operand case above, which value will be pushed

first and popped out in the queue of operation over a stack, or an

array of two or three registers? For instance, software code execution

per hardware-to-hardware component communication is always a challenge

in order to obtain better performances (efficiency as the ratio between

the useful output for a total number of inputs (including data quality

and quantity)).

Good luck,

Philip

===

Philip B. Alipour,

Ph.D. Candidate in Electrical, Computer Engineering and Quantum Physics,

Dept. of Electrical and Computer Engineering, University of Victoria, V8W

3P6, Canada,

Office: ELW Room # A358,

Email: phibal12@uvic.ca or philipbaback_orbsix@msn.com

Homepage: http://web.uvic.ca/~phibal12/

http://en.wikipedia.org/wiki/Arithmetic_overflow
mailto:phibal12@uvic.ca
mailto:philipbaback_orbsix@msn.com
http://web.uvic.ca/~phibal12/

