
15 Oct. 2015

1

Chapt. 2 CENG 255 TA Lab Log Progress Report

TA: Philip B. Alipour

General Log and Notes:

1. What happened previously and what shall happen in the next lab?

i. Following our last session, due to the thanksgiving holiday, the 1st

lab evaluation will commence during the next session, 2nd lab.

o Session unofficially starts at 12:00 PM until 3:10 PM on Thursday

22nd, and I and/or other TAs will be available in the lab for

sessional questions related to technical problems and assignment

related question relative to student performance.

o Please bring your pre-lab 2 for the next session; class performance

(compile, run and explain lab 1 codes) will be marked accordingly.

o Students can now work and record their Lab 2 codes for their reports

the week after the sessional closure.

ii. Next session will be conducted with all students to be marked prior to

their report submission two weeks after the session ends.

iii. Marking results handouts and comments based on our agreement will be

given to each individual with only their student number visible on

screen or posted via email with the individual’s grade.

iv. The focus of this lab is to write your code in assembly and generate

prime numbers. For a successful code, 45% is granted and as you explain

the code, another 5% is added. For an attempted code without major

errors, 30% assuming most of the objectives are accomplished. I will

also give a hint code (see next page). Note: this is an assembly line-

by-line comment style algorithm for you to translate and successfully

run the code. If your code is based on this, as far as it fulfills all

of the objectives, the 45% is granted.

v. Another 10% would be granted if you successfully show an optimized

version of your code with shorter time execution (2% to display the

time even if it is a slow code compared to others; 7% for the best time

possible and how you have implemented it).

vi. I shall continue to assist students on their machines as technical

problems occur on the debugger and software as well as giving hints on

the lab and performance evaluation per group. Lab 2 performance is one

week after the next session.

vii. It is expected to have 11 groups present. The time of lab 1 evaluation

will be compressed as each person must attend and perform. The other TA

Patel, shall mainly assist in his session. So, some can stay at Patel’s

class after 3:15 PM if lab 1 performance is still pending, since there

are 3-4 more stations (corner ones) available in his lab. So evaluation

can be fully done on 4 groups if left behind (no penalty considered).

viii. I will include bonus points, a maximum of 5% in order to compensate the

overall session grade for those who have lost points during and after

session (such as in the lab report due next week.)

Notes for the Attending Students on the forthcoming lab sessions:

2.1. Primary challenges and info on Lab 2

 As usual you need to take the same steps as of Labs 0 and 1 in eclipse

to compile and run the code series successfully. But now you need to

2

write up your own assembly code to generate your prime numbers in an

array successfully and efficiently (in terms of machine performance).

 Now you can appreciate how extensive the process is on assembly level

checking out the register content being updated by operators

systematically, as they are compared (cmp), branched into (e.g. bge)

like a switch (cases in C language), popped from or into, etc. compared

to the high-level representation of a simple code (finding prime

numbers using modulus, for example).

 To understand how a high-level language can be translated to assembly

and thus interpreted on a machine level, an email was sent to you with

a way to translate on http://assembly.ynh.io/ as well as the 2nd lab

manual code including all the commands and comments attached in that

email. You might find both useful for the current solution.

 The following is the comment-based and actual assembly code (most lines

need your input to complete the missing parts i.e. the actual code and

not the comments) for Lab 2 problem, where you need to translate it

properly in your code and it will work expectably!

 Note: registers in the following code could be any other number

depending on your code assumption… if you have your own solution, you

may compare and have it both to present, you shall gain bonus marks as

well for the effort (of course, commented code):

// This file is part of the GNU ARM Eclipse distribution.

// Copyright (c) 2014 Liviu Ionescu.

//

// Lab 2 prime numbers Hint Code:

// Parts have been appended as a hint code and will not compile properly if not

//complemented

// properly by the student (for the purposes of the CENG 255 course at UVic, Canada, Nov.

// 2014--2015)

//

// Authors: Rex Lei and Philip B. Alipour

// --

.data

primeArray: .space @type in a value for your space appropriately

 .text

 .global main

main: //change main to the file you create to avoid main filename

 // conflict in eclipse e.g. ComputePrimes

//and make sure to link this file to the main.c via extern function in that file

 push {r3,r4,r5,r6,r7}

 mov r4, lr

 push {r4}

//initialize i, n, load array address

 mov r2, #3 @ r2 <- i=3

 mov r3, #0 @ r3 <- n=0

 ldr r0, primeArrary_addr @r0 <-obtain primeArrary address and put in r0

//end

/***/

//1st 'for' loop

for1:

 cmp @ n<30

 bge @ if n>= 20, then stop loop

 mov @ r5 <- prime=1

http://assembly.ynh.io/

3

 mov @ r6 <- put i to r6

 lsr @ r6 <- i/2

 mov r7, r6 @ r7 <- Limit=i/2

 mov r1, #2 @ r1 <- j=2

//2nd 'for' loop

for2:

 @ if j < Limit

 bge endfor2 @ j>= Limit

 mov @ r4 <- r2, temporarily put i to r4 to calculate remainder

/***/

//3rd 'for' loop to calculate the remainder i mod j

for3: @ need to compute the remainder = i mod j (r2 mod r1)

 @ if r4 >0

 @ if r4 >=0

 sub @ r4 <- r4-r1 (r4 <- i-j)

 b for3 @

endfor3:

/***/

//verify i is prime or not

if1:

 cmp @ if remainder == 0

 bne @ remainder != 0

 mov @ r5 <- prime = 0

 b endfor2 @ end for2

fi1:

 add @ r1 <- j++

 b @ goto for2

endfor2:

if2:

 cmp @ if prime==1

 bne @ prime!=1

 @ n++

 str @ store i to primeArray

 add r0, r0, #4 @ adjust primeArray address to store next prime number

fi2:

 @ i+=2

 b @ goto for1

endfor1:

stop:

 pop {r4}

 mov lr, r4

 pop {r3,r4,r5,r6,r7}

 bx lr

 .align

primeArrary_addr: .word primeArray

/***/

//once this code is complete, make sure to link it to the main.c file according to the

//last page of your Lab # 2 manual and run your code successfully. It should generate

your // primes and can be checked using the registry list (memory map) containing the

numbers // step-by-step run. Also for full marks, the timer must be displayed.

2.2. Hardware/software challenges

 Compared to the TA’s sorting algorithm, for the full 10% portion of the

60% you need to have either a sorting algorithm or a way in

partitioning your space (the first two lines after the current header

above (or see lab 1, part 3 code)) and manage/sort data relative to

4

what is actually being stored/read in your address (to deal with the

big O algorithm complexity issue of your looping algorithm… see below).

 To make your code the most efficient (which is beyond the scope of this

lab… but if you do it, you gain bonus marks on top of the regular total

as well!) you need to know the difference between the times/steps e.g.,

T(n)= O(n^2) and O(n).

The aim is to achieve the latter and in a perfect world, O(n-{1, 2, 3,

…}) when the code executes. For example, as depicted below, if an

operation is performed from right-to-left (in your eclipse, the memory

map is displayed and partitioned from left-to-right), the little endian

distance is shorter than the big endian. If the relevant contents

representing your prime numbers is stored in the targeted address, yet

with extra bits (the way space is partitioned in your code as you

define it), then it inevitably stores the content line-by-line for the

ascending prime numbers with much greater distances (accessing the big

endian addresses) D. This will impede or slow down the level of code

execution i.e. greater algorithmic complexity or higher O’s.

The aim is to gain minimum distances of d’s rather than D > d which

pertains to bigger O’s (something to avoid or address upon).

And the relation between distance d or D to processing speed or

performance is frequency f of the input/output of data to/from

registers, such that

d*f = ps or processing speed, where

f=1/T(n) and is measured in Hertz (or cycles per second).

2
0

 Little endian

2
0 Big endian

Relevant contents of your prime #
value stored in the address

Extra or some complementary data
content of your prime: some relevant

some can be sorted and/or can be value
to be flushed out from the address

The flow of storing the generated
bits/bytes by the program (what

about sorting them?)

D > d

5

So the more steps in frequency f to process data items with distance D,

the worst your computational performance.

 Another issue that could be addressed is changing the flow and order of

your For loops as well as nested loops based on a condition which could

be instead of satisfying long iterations (longer distances) satisfy

shorter ones if possible.

 The proper solution to achieve an optimized code would be typing up a,

e.g. a sorting algorithm like Bubble Sort

(http://en.wikipedia.org/wiki/Bubble_sort) to address O(n
2
) and satisfy

O(n) levels of execution.

 The timing is generated for a successful loop series by the main.c

file, and not the prime numbers source code where you are supposed to

work on as your prime numbers solution.

Notes on the C to assembly translator:

 The http://assembly.ynh.io/ website will run and show you the flow of

the logic behind the code on a different machine (the Hint Code text

file sent to you before as you copy-pasted it and tried different

translator settings, and subsequently highlighted specific portions of

your code as you clicked on the line of code in C to Assembly).

 Although on the STM-32 microcontroller, the behavior is different and

copy-pasting won’t work from the translator during compilation (you’ll

get errors). However, it is a good resourceful indicator to figure out

your code’s flow and logic in implementing the code in aim of

accomplishing your Lab 2 objective (Sec. 2.5 of the manual). So try to

map the translated part to your code especially where the mod operation

is concerned.

 In C, both % and mod operations are possible, whereas the latter

depending on the compiler might be not accepted so this function must

be typed up or brought into code by a library function (#include…).

o Another problem is the division in ARM assembly. Here is a useful

article to get this done for your mod function from C to assembly,

which also addresses the division by 0 problem usually encountered in

writing a loop for a specified range setting by the programmer (you

the master/creator of your code):

http://www.tofla.iconbar.com/tofla/arm/arm02/

Other notes to do with your course material as well as Lab 2:

 Some have had questions about the course material, but since the time

is condensed, and the class is big compared to other TA labs, I won’t

be able to answer outside of the lab scope. A question was raised on

the two’s complement, which is a lengthy mathematical discussion to

cover, however, the short version can be explained, hereby exemplified:

https://www.youtube.com/watch?v=SXAr35BiqK8 and

https://www.youtube.com/watch?v=Hof95YlLQk0 (this link also discusses

http://en.wikipedia.org/wiki/Bubble_sort
http://assembly.ynh.io/
http://www.tofla.iconbar.com/tofla/arm/arm02/
https://www.youtube.com/watch?v=SXAr35BiqK8
https://www.youtube.com/watch?v=Hof95YlLQk0

6

about the complementary results in different machines as well as

overflow (focus is on operation as well as size. In any case, size is

always an issue, either in a buffer, stack or number stored by a

register: “In a computer, the amount by which a calculated value is

greater in magnitude than that which a given register or storage

location can store or represent”

http://en.wikipedia.org/wiki/Arithmetic_overflow))

which could be useful for your midterm exam as well.

 Also operands during operations will change the register content when

written in assembly (or even C). For instance, what is the difference

between in the order and result of execution by the operators in the

following expression? (what is prioritized in the operation in this

example?):

(2+3)*5 against 2+3*5

 The purpose of push and pop is also of importance during operations.

For instance, in the operand case above, which value will be pushed

first and popped out in the queue of operation over a stack, or an

array of two or three registers?

 Lab manual and the relevant files are available at

http://www.ece.uvic.ca/~ceng255/lab/.

 Make sure to download all including the metadata and save into your

workspace. Your workspace is created once you run (execute) Eclipse.

 However, based on my experience, the communication between the

microcontroller and the workstation/PC sometimes created unstable

responses, hangs and thus an on-hand real-time debugging solution is

required. On occasion (especially when Leonard had his group session),

I had to disconnect the microcontroller from the station and resume all

over again by logging off and take the same steps.

 To investigate memory contents thoroughly between the memory map in

eclipse and thereby study the hardware firsthand, run the STM-32

hardware program on your desktop. You may depict and mention these

comparisons in your report next time if it helps your discussion/

analysis on the Have a productive week,

Good luck,

Philip

==

Philip B. Alipour,

Ph.D. Candidate in Electrical, Computer Engineering and Quantum Physics,

Dept. of Electrical and Computer Engineering, University of Victoria, V8W

3P6, Canada,

Office: ELW Room # A358,

Email: phibal12@uvic.ca or philipbaback_orbsix@msn.com

Homepage: http://web.uvic.ca/~phibal12/

http://en.wikipedia.org/wiki/Arithmetic_overflow
http://www.ece.uvic.ca/~ceng255/lab/
mailto:phibal12@uvic.ca
mailto:philipbaback_orbsix@msn.com
http://web.uvic.ca/~phibal12/

