
20 Oct. 2014

1

Chapt. 2 CENG 255 TA Lab Log Progress Report

TA: Philip B. Alipour

General Log and Notes:

1. What happened in the lab?

i. Following our last session, an update was arranged by me and Leonard

for the subsequent session which took place last week (closing day):

o Session unofficially started at 2:30 PM until 5:30 PM on Tuesday

14th, Leonard and I were available at the lab and it was open for

those who were interested in working on the solution to access and

ask questions regarding the second lab. No grades or assessments were

made except some hints as we shall point out in this log in full.

o To this account, tomorrow’s session will begin an hour before the

formal hour for 2nd lab performance evaluation and those pre-labs

which have not been marked yet (for those still unmarked as indicated

in your grades pdf file sent to you before,

o Please bring your pre-labs to this session.)

o Students can now have the chance to work longer and record their

codes for their reports next week.

ii. Session will officially start at 2:30PM, unofficially at 1:30 PM. The

formal duration is 2:30 to 5:20PM according to

http://www.ece.uvic.ca/~ceng255/lab/information.html#schedule.

iii. Tomorrow session will be conducted with all students to be marked prior

to their report submission next week on 28 Oct. 2014, 11:59PM.

iv. Marking results handouts and comments based on our agreement will be

given to each individual with only their student number visible on

screen or posted via email with the individual’s grade.

v. The focus of this lab is to write your code in assembly to generate

prime numbers. For a successful code, 45% is granted and as you explain

the code, another 5% is added. For an attempted code without major

errors, 30% assuming most of the objectives are accomplished. I will

also give a hint code (see next page). Note: this is an assembly line-

by-line comment style algorithm for you to translate and successfully

run the code. If your code is based on this, as far as it fulfills all

of the objectives, the 45% is granted.

vi. Another 10% would be granted if you successfully show an optimized

version of your code with shorter time execution (2% to display the

time even if it is a slow code compared to others; 7% for the best time

possible and how you have implemented it).

vii. I shall continue to assist students on their machines as problems occur

on the debugger and software as well as giving hints on the lab and

performance evaluation per group.

viii. It is expected to have 11 groups present. The time of evaluation will

be compressed as each person must attend and perform. The other TA

Leonard, shall assist mainly in his session. So some can stay at

Leonard’s class after 5:30PM if their code is still under development,

since there are 4 more stations available in his lab. So evaluation can

be fully done on 4 groups if left behind (no penalty considered).

ix. I will include bonus points, a maximum of 5% in order to compensate the

overall session grade for those who have lost points during and after

session (such as in the lab report due next week.)

http://www.ece.uvic.ca/~ceng255/lab/information.html#schedule

2

Notes for the Attending Students on the forthcoming lab sessions:

2.1. Primary challenges and info on Lab 2

 As usual you need to take the same steps as of Lab 1 in eclipse to

compile and run the code series successfully. But now you need to write

up your own assembly code to generate your prime numbers in an array

successfully and efficiently (in terms of machine performance).

 Now you can appreciate how extensive the process is on assembly level

checking out the register content being updated by operators

systematically, as they are compared (cmp), branched into (e.g. bge)

like a switch (cases in C language), popped from or into, etc. compared

to the high-level representation of a simple code (finding prime

numbers using modulus, for example).

 To understand how a high-level language can be translated to assembly

and thus interpreted on a machine level, an email was sent to you with

a way to translate on http://assembly.ynh.io/ as well as the 2nd lab

manual code including all the commands and comments attached in that

email. You might find both useful for the current solution.

 The following is the comment-based and actual assembly code (most lines

need your input to complete the missing parts i.e. the actual code and

not the comments) for Lab 2 problem, where you need to translate it

properly in your code and it will work accordingly!

 Note: registers in the following code could be any other number

depending on your code assumption… if you have your own solution, you

may compare and have it both to present, you shall gain bonus marks as

well for the effort (of course, commented code):

.data

primeArray: .space @type in a value for your space

 .text

 .global main

main:

 push {r3,r4,r5,r6,r7}

 mov r4, lr

 push {r4}

//initialize i, n, load array address

 mov r2, #3 @ r2 <- i=3

 mov r3, #0 @ r3 <- n=0

 ldr r0, primeArrary_add @r0 <-obtain primeArrary address and put in r0

//end

/***/

//1st 'for' loop

for1:

 cmp @ n<30

 bge @ if n>= 20, then stop loop

 mov @ r5 <- prime=1

 mov @ r6 <- put i to r6

 lsr @ r6 <- i/2

 mov r7, r6 @ r7 <- Limit=i/2

 mov r1, #2 @ r1 <- j=2

//2nd 'for' loop

http://assembly.ynh.io/

3

for2:

 @ if j < Limit

 bge endfor2 @ j>= Limit

 mov @ r4 <- r2, temporarily put i to r4 to calculate remainder

/***/

//3rd 'for' loop to calculate the remainder i mod j

for3: @ need to compute the remainder = i mod j (r2 mod r1)

 @ if r4 >0

 @ if r4 >=0

 sub @ r4 <- r4-r1 (r4 <- i-j)

 b for3 @

endfor3:

/***/

//verify i is prime or not

if1:

 cmp @ if remainder == 0

 bne @ remainder != 0

 mov @ r5 <- prime = 0

 b endfor2 @ end for2

fi1:

 add @ r1 <- j++

 b @ goto for2

endfor2:

if2:

 cmp @ if prime==1

 bne @ prime!=1

 @ n++

 str @ store i to primeArray

 add r0, r0, #4 @ adjust primeArray address to store next prime number

fi2:

 @ i+=2

 b @ goto for1

endfor1:

stop:

 pop {r4}

 mov lr, r4

 pop {r3,r4,r5,r6,r7}

 bx lr

 .align

primeArrary_addr: .word primeArray

2.2. Hardware/software challenges

 Compared to our (TA’s) sorting algorithm, for the full 10% portion of

the 60% you need to have either a sorting algorithm or a way in

partitioning your space and manage/sort data relative to what is

actually being stored/read in your address (to deal with the big O

algorithm complexity issue of your looping algorithm… see below).

 To make your code the most efficient (which is beyond the scope of this

lab… but if you do it, you gain bonus marks on top of the regular total

as well!).

 You need to know the difference between the times/steps e.g.,

T(n)= O(n^2) and O(n).

4

The aim is to achieve the latter and in a perfect world, O(n-{1, 2, 3,

…}) when the code executes. For example, as depicted below, if an

operation is performed from right-to-left (in your eclipse, the memory

map is displayed and partitioned from left-to-right), the little endian

distance is shorter than the big endian. If the relevant contents

representing your prime numbers is stored in the targeted address, yet

with extra bits (the way space is partitioned in your code as you

define it), then it inevitably stores the content line-by-line for the

ascending prime numbers with much greater distances (accessing the big

endian addresses) D. This will impede or slow down the level of code

execution i.e. greater algorithmic complexity or higher O’s.

The aim is to gain minimum distances of d’s rather than D > d which

pertains to bigger O’s (something to avoid or address upon).

And the relation between distance d or D to processing speed or

performance is frequency f of the input/output of data to/from

registers, such that

d*f= ps or processing speed, where

f=1/T(n) and is measured in Hertz (or cycles per second).

 Another issue that could be addressed is changing the flow and order of

your For loops as well as nested loops based on a condition which could

be instead of satisfying long iterations (longer distances) satisfy

shorter ones if possible.

2
0

 Little endian

2
0 Big endian

Relevant contents of your prime #
value stored in the address

Extra or some complementary data
content of your prime: some relevant

some can be sorted and/or can be value
to be flushed out from the address

The flow of storing the generated
bits/bytes by the program (what

about sorting them?)

D > d

5

 The proper solution to achieve an optimized code would be typing up a,

e.g. a sorting algorithm like Bubble Sort

(http://en.wikipedia.org/wiki/Bubble_sort) to address O(n2) and satisfy

O(n) levels of execution.

 The timing is generated for a successful loop series by the main.c

file, and not the prime numbers source code where you are supposed to

work on as your prime numbers solution.

Notes on the C to assembly translator:

 The http://assembly.ynh.io/ website will run and show you the flow of

the logic behind the code on a different machine (the Hint Code text

file sent to you before as you copy-pasted it and tried different

translator settings, and subsequently highlighted specific portions of

your code as you clicked on the line of code in C to Assembly).

 Although on the STM-32 microcontroller, the behavior is different and

copy-pasting won’t work from the translator during compilation (you’ll

get errors). However, it is a good resourceful indicator to figure out

your code’s flow and logic in implementing the code in aim of

accomplishing your Lab 2 objective (Sec. 2.5 of the lab manual). So try

to map the translated part to your code especially where the mod

operation is concerned.

 In C, both % and mod operations are possible, whereas the latter

depending on the compiler might be not accepted so this function must

be typed up or brought into code by a library function (#include…).

o Another problem is the division in ARM assembly. Here is a useful

article to get this done for your mod function from C to assembly,

which also addresses the division by 0 problem usually encountered in

writing a loop for a specified range setting by the programmer (you

the master/creator of your code):

http://www.tofla.iconbar.com/tofla/arm/arm02/

Other notes to do with your course material as well as Lab 2:

 Some have had questions about the course material, but since the time

is condensed, and the class is big compared to other TA labs, I won’t

be able to answer outside of the lab scope. A question was raised on

the two’s complement, which is a lengthy mathematical discussion to

cover, however, the short version can be explained as hereby

exemplified: https://www.youtube.com/watch?v=SXAr35BiqK8 and

https://www.youtube.com/watch?v=Hof95YlLQk0 (this link also discusses

about the complementary results in different machines as well as

overflow (focus is on operation as well as size. In any case, size is

always an issue, either in a buffer, stack or number stored by a

register: “In a computer, the amount by which a calculated value is

greater in magnitude than that which a given register or storage

location can store or represent”

http://en.wikipedia.org/wiki/Arithmetic_overflow))

which could be useful for your midterm exam as well.

http://en.wikipedia.org/wiki/Bubble_sort
http://assembly.ynh.io/
http://www.tofla.iconbar.com/tofla/arm/arm02/
https://www.youtube.com/watch?v=SXAr35BiqK8
https://www.youtube.com/watch?v=Hof95YlLQk0
http://en.wikipedia.org/wiki/Arithmetic_overflow

6

 Also operands during operations will change the register content when

written in assembly (or even C). For instance, what is the difference

between in the order and result of execution by the operators in the

following expression? (what is prioritized in the operation in this

example?):

(2+3)*5 against 2+3*5

 The purpose of push and pop is also of importance during operations.

For instance, in the operand case above, which value will be pushed

first and popped out in the queue of operation over a stack, or an

array of two or three registers?

 Lab manual and the relevant files are available at

http://www.ece.uvic.ca/~ceng255/lab/.

 Make sure to download all including the metadata and save into your

workspace. Your workspace is created once you run (execute) Eclipse.

 However, based on my experience, the communication between the

microcontroller and the workstation/PC sometimes created unstable

responses, hangs and thus an on-hand real-time debugging solution is

required. On occasion (especially when Leonard had his group session),

I had to disconnect the microcontroller from the station and resume all

over again by logging off and take the same steps.

 To investigate memory contents thoroughly between the memory map in

eclipse and thereby study the hardware firsthand, run the STM-32

hardware program on your desktop. You may depict and mention these

comparisons in your report next time if it helps your discussion/

analysis on the Have a productive week,

Good luck,

Philip B. Alipour,

Ph.D. Researcher in Electrical, Computer Engineering and Quantum Physics,

Dept. of Electrical and Computer Engineering, University of Victoria, V8W

3P6, Canada,

Office: ELW Room # A358,

Emails: phibal12@uvic.ca or philipbaback_orbsix@msn.com

Homepage: http://web.uvic.ca/~phibal12/

http://www.ece.uvic.ca/~ceng255/lab/
mailto:phibal12@uvic.ca
mailto:philipbaback_orbsix@msn.com
http://web.uvic.ca/~phibal12/

