

 T
h

e
 U

n
iv

e
rs

e
 E

x
p

lo
re

r
A

rc
h

it
ec

tu
re

 D
es

ig
n

B
L

E
K

IN
G

E
 T

E
K

N
IS

K
A

 H
Ö

G
S

K
O

L
A

,
S

w
ed

en

P
h

il
ip

 B
ab

ac
k

 A
li

p
o

u
r,

O

le
g

K

u
st

o
v

,
H

iv
a

A
ll

ah
y

ar
i

O
ct

o
b

e
r

1
5

, 2
0

1
0

So
ft

gr
ad

e
s

So
ft

w
ar

e
U

p
gr

ad
es

S
o

ft
w

a
re

 U
p

g
ra

d
es

S
o

ft
w

a
re

 U
p

g
ra

d
es

La

te
st

 T
el

em
et

ry
 C

o
n

tr
o

ls

2

The Universe Explorer
Architecture Design

Abstract

In this document, we have elaborated on the key terms and designed the Universe Explorer (UE)

system with relevant components, using IS2000 fictional system on the signal processing,

communication and data acquisition parts, as a standard to this work. Nevertheless, a customized

hardware-software engineering notation to our design from different viewpoints, Conceptual,

Modular, Execution and Code, is also visible. The customized notations were used for our main

global analysis topologies due to incorporating latest technological standards and beyond, within

the systems‘ specifications domain. The topologies represent the foundation of our work in terms

of both, hardware and software of the UE system to maintain communication between Space and

Earth, since this is the primary focus of the software architecture. We have for our entity

managers and controllers, also proposed novel solutions in our architecture, such as carbon nano-

tubes (CNTs) as a hardware and sensory component, for UE shield and thermodynamics. A new

invention-model of a parallel time-varying CNT-microchip, is also proposed, satisfying UE‘s 50-

year or longer mission, addressing issues concerning information latency, parallel processing,

and data integrity (avoiding any data loss) relative to a lossless data compression algorithm

(LDC), on its databases, security, etc., transmitted from Space to Earth. This LDC, with its

predictably-fixed compression ratios, fulfills the software-hardware strategies outlined on data

processing constraints, such as temporal and spatial limits against random LDCs, thus making the

software application to deliver binary data, real-time, rather than random time, from an execution

viewpoint. The current work is novel in its software and hardware quality framework, and to this

account, all views are discussed with relevant examples to the architecture. Agent-based trainable

algorithms evolving the instruction set architecture (ISA) on entities inclusive of a 2n-core CPU

soft-switch semaphore solution, throughout the UE mission, are also discussed in this document.

Keywords: Processors, data compression, binary database, entities, connectors, roles, software

quality, UE satellite.

3

Table of Contents
1. UE System Context and Introduction .. 4

1.1. The UE Satellite Class ... 6

1.2. System Description and Specification ... 6

1.2.1. Components for Hardware-Software Description and Specification: ... 6

The Building Blocks for the Conceptual View ... 6

1.2.2. An Early Core Evaluation ..14

Choice, Rationale and Solutions ..14

1.2.3. UML Use Case Diagrams for UE Hardware-Software Specification:...17

A Preamble to Global Analysis Scenario Factors ..17

2. Global Analysis ..18

2.1. System Scenario Factors, Limitations and Solution ...19

2.1.1. Analyze Product Factors: ..22

The Building Blocks for the Conceptual View ..22

2.1.2. Analyze Technological Factors: ..29

The Building Blocks for the Conceptual View ..29

2.1.3. Analyze Organizational Factors: ...31

The Building Blocks for the Conceptual View ..31

2.1.4. Analyze Evolutionary Factors: ..32

The Building Blocks for the Conceptual View ..32

2.1.5. Develop Strategies: ..32

The Building Blocks for All Views ...32

2.1.6. Quality Requirements: ...38

Software and Hardware ...38

3. Conceptual Architecture View ..48

3.1.1. Components for Software Specification: ..48

Function Blocks, Connectors and Categorization..48

3.1.2. Sender/receiver Processing Scenarios and Conceptual Configuration50

Processing Scenario, Meta-Model, UEDOMessage Protocol and Configuration ..50

4. Module Architecture View ...55

4.1.1. Decomposition of the Platform Software ...58

Data managers ...58

4.1.2. Layering Structure ...59

4

C

Software -Hardware Layers ...59

4.1.3. Error Logging ..61

The Building Blocks to Evolutionary Agent-Based Programming ...61

5. Execution Architecture View ..61

5.1.1. Defining Runtime Entities ..63

Task Assignment Meta-model and Execution Deadlines ..63

5.1.2. Communication Paths ..65

Main Processors and more on Deadlines ...65

5.1.3. Execution Configuration ..65

Main Processors and more on Deadlines ...65

6. Code Architecture View ...67

6.1.1. Code Development Process, Scenarios and Architecture: ...67

Code, Choose, Build, and Deploy ...67

6.1.2. Development Strategy with UE ABL: ...71

Choose, Learn from Mistakes, Build, and Reconfigure the Code ...71

6.1.3. UE ABL Evaluation ..73

Is it a Blackboard Architectural Approach? - What does it learn? - Is it a Risk? ...73

7. Summary ...74

References ...76

1. UE System Context and Introduction
onstruction, instrumentation, and control of a Satellite System for a Universe Explorer (UE)

Mission or spacecraft project, reaching beyond the limits of our galaxy to the far ends of the

universe, can be divided into four main categories: operational UE, all time/real-time

communication UE, tolerance-related UE, and application upgrade-related UE.

The UE should in its system specification include supportive parts or components for a healthy

communication between Earth and its control units from the point of data gathering in Space. A ―healthy

communication‖ here, means data to be transmitted as efficient as possible, without errors or scrambled

messages delivered to its point of destination on Earth. Therefore, the design should also be fault-tolerant,

equipped with checkpoints and real-time hardware/software management issues. The system must also

exclude irrelevant data on the spot as defined by the system specification manual, to avoid any e.g. memory

overruns when receiving raw data (primary) no matter how packetized or compressed in terms of

information technology utilized onboard for a range of frequencies. We generally must maintain

meaningful data as secondary high-level information after certain primary data manipulations onboard the

satellite, when received on Earth for further processing and thus analysis.

When we mean meaningful data, is the relevance of information within the Knowledge Engineering

context that is valuable to the UE remote users on Earth which decipher it as imperative data to their

research and global presentations. It could be classed as e.g., whether forecast of some planet, bio-

5

signatures indicating life, chemical elements useful to a human environment, photographic-based

geological data, etc. Such data could be in form of digitized and analogue signals as voice patterns, imagery

type, etc. So, the UE system must also be equipped with all sorts of subsystems to receive and deliver the

right information whereas this information is defined by the designers of the UE knowledge based system

useful for a particular mission. For example, one could specialize the regular tasks carried out by UE

program routines to check for only life signs for a certain period of time e.g., when close to planet Mars,

and then shift back to its universal routines for real-time reports. These instances are most likely to happen

when data is being analyzed on Earth, once detecting some important sign of e.g., life, commanding the

satellite to head back to its previous spot to verify some of that information for us observing events on

Earth.

In this chapter, we shall introduce the UE system in its context and demarcate the vital global elements

of its functional components on design activities. From there, inclusive of examples where safe vs. critical

scenarios could happen in its 50 year mission in space, we discuss and analyze our engineering system

(global analysis) in sign of delivering the conceptual, module and execution architecture views in Chapters

2, 3, 4 and 5 respectively. The presentation and structure of our current report obeys the way where applied

architectural contributions are made in Hofmeiester et al. course book [1].

We first specify our functions map in form of a full-system description and its overall specification as

a preamble to UE conceptual, module and execution viewpoints, relative to its quality requirements. We

further imply the latest hardware and software components relevant to extreme (harsh) environments where

temperature, magnetic fields, lack of sunlight causing extreme subzero conditions, disrupting data I/O

products between UE system units, even affecting hardware to function poorly or shutting down

indefinitely. This obviously, for extreme conditions requires a backup system intact with the unit parallel to

actuators for its navigation system. The backup system includes redundant data paths for replacing a

damaged circuit with a healthy one, DB reserved partitions for control units in case of failures, and thus a

memory management system for efficient processing of input signals (data acquisition by onboard sensors,

signal conditioning circuitry and analog-to-digital converters, or see, Chap. 8 [1]).

The motive for our system base in its design, description and topology, was a simple client-server

model, where we contemplated the incoming signals from space to the UE system, as the ―source client‖,

and the server part, the UE itself, receiving more signals when necessary from Earth as the ―command‖ or

―sink client‖ connected to the satellite.

The main hardware and software topology for a complete system description is given in Figs. 1-3. Fig.

1 represents the bottom plan (Pl. A): the base of the UE satellite system or its anatomic foundation, core of

operations, mechanics, thermodynamics and network. For its mechanical state avoiding obstacles and

problematic issues in space or by contrast, maneuvering the system to specific geographical points in space,

came about the knowhow robotic and machinery systems work in our real world environments. Of course,

the main assumption to this is realizing that space is a vacuum and objects floating in it are classed as

planetary, stellar, and other forms of bodies regardless of weight constraints, physical dimensions and

behavior to act free in their own account until an interacting force influences them to fall into certain

physical restrictions. So, we initially staged our UE to have been launched into space and the basics of

weight analysis, atmospheric pressure constraints such as friction between its body (bus) and air, have been

dealt with on Earth before its space exploration chronology or its 0s to 50 year mission. We also assume

that the costs above $0.5 billion according to NASA‘s official reports [4] have been covered for this launch

and the UE system, of course, with multiple backup systems have been graciously considered by its

manufacturers. To this account, the main focus is to maintain the most efficient way for a 50 year timeline

successful mission of the unit working in space, transmitting data to Earth and vice versa. The latter,

however, is mostly of a critical condition handling type or a command module type giving further

instructions to the satellite for a particular task based on data collection priority, management, processing

and communication.

6

1.1. The UE Satellite Class
The class of this satellite is specialized for travelling to the far ends of the universe on a scientific mission,

whilst equipped with functions performing tasks identical to those tasks performed by other satellite

classes, according to [3]. Nowadays, satellite technology comes with all shapes and sizes, and in general,

are classed as follows: Weather satellites; communications satellites; broadcast satellites; navigational

satellites; rescue satellites; Earth observation satellites; Military satellites and amongst them, the most

relevant class to the UE system, would be Scientific satellites: They perform a variety of scientific

missions. The Hubble Space Telescope is the most famous scientific satellite, but there are many others

looking at everything from sun spots to gamma rays [3]. Most satellites are orbit based, however,

noncommercial scientific satellite that travel between orbits through e.g. slingshots and other mission for

surveying planets must have unique capabilities for long missions when attaining at some alien-like orbit

level at some planetary level in space. A good example is Cassini-Huygens satellite or spacecraft probe

[27].

The UE satellite, of course, in its generalized tasks criteria, must be able to perform some of the tasks

outlined above, such as: Weather, communications, geological changes (observation), photographic, etc.

In its specialized class, however, it is simply scientific looking at everything e.g. alien life forms throughout

its mission. In other words, the UE must satisfy a combination of proficient abilities conducted by other

satellite, prior to its expertise as outlined in its system specification for its scientific mission, once lunched

from the Earth‘s atmosphere to space.

1.2. System Description and Specification
The UE satellite, is a very customized, a very pinpointed designated system for specialized tasks, and is

unlike the heaviest communications satellite with a weight of 6.5 tons that was successfully launched to

satisfy a commercially-oriented, human-consumer grade media technology on Earth [4]. It is ―scientific‖,

noncommercial, and differs from other satellite custom product lines, with a specific purpose to explore the

ends of our universe.

1.2.1. Components for Hardware-Software Description and Specification:

The Building Blocks for the Conceptual View

The UE is there to send us information in aim of building our knowledgebase system on Earth. For this

assignment, UE requires for its hardware/software units to filter out information highly-efficient with the

latest technologies installed onboard.

http://www.howstuffworks.com/hubble.htm
http://www.howstuffworks.com/sun4.htm
http://www.howstuffworks.com/nuclear3.htm

7

Fig. 1. The UE Satellite hardware and software topology in space, receives data, processes it and sends it to Earth. This

plan also shows the supportive features of the satellite for successful data transmissions, actuations, power supply and

backup systems onboard under critical and regular circumstance. The hashed areas are the identical version of the

lower-left corner subsystem, satisfying UE‘s areal maneuverability air and temperature flow control.

We have shown this for at least two CPUs working in parallel for incoming raw data with manipulative

features on certain levels of information (like data compression). Our choice of two CPUs, is motivated and

rationalized in the evaluation section ahead, §1.2.2.

In continue, we even considered that our units will not weigh much in total, inclusive of their backups,

up to 2n-CPUs or subsystems due to the incorporation of CNTs as a very light-weight solution. In Fig. 1,

Plan A, as the lower-plan of the satellite (compare with the upper-plan, Fig. 2), mostly represents the vital

components of the satellite‘s hardware: Actuators, CPUs and Memory with main processing and control

unit paths within its exploration missionary context. Furthermore, it includes in its architecture solutions

switches and shifters for such actuators and electronics respectively for emergency calls as its backup

system or compensators. In addition, Fig. 1, partly includes a software solution in terms of a binary

database (BDB), which is chiefly considered for processing, storage and data management issues like e.g.,

8

data retrieval, filtering, communication choice of shortest paths for controllers, compression, etc., by

referring to the right binary index indeed.
1

As we can see in Fig. 1, we have defined the successive steps in terms of regular with a shaded black

background, critical with a light yellow background, and highly-critical with a red background. We

specify these steps as follows:

Fig. 1 Regular steps (routines):

0) The UE is equipped with two CPUs assuming that both could even be manufactured with latest

multi-core nanotechnology (see explanations after steps): CPU 01 is dedicated to data processing

and DB management issues before sending the resultant data to Earth. CPU 02, however, is

dedicated to manage and monitor all hardware components, their variances in performance,

including instabilities within the chamber that might occur throughout this mission. The CPUs

with their memories are presented in terms of ‗von Neumann architecture‘ denoting standard

instructions set and communication scheme, relative to this parallel processing between units over

all of the subsequent steps of UE.

1) The UE receives/picks up a remitted signal from something/body/object in space via its sensor.

The remission is a pre-condition to the current sensory event either projected to that thing from the

UE satellite (the light component) installed on the telescopic level (the canalized dotted

compartment above or inclusive of the sensor)

2) The input signal after being filtered and preprocessed via the signal acquisition computer,

subsequent to the sensor, is delivered for processing to the data processing subsystem.

3) Here, data is processed and also classified (what type of data as e.g. sound type, imagery, etc.) and

thus the irrelevant parts of the signal that occupy void, space, static or extraneous data are

removed or excluded on the database. The signals are processed in n-equipartitioned forms or

parallel incoming flows (k imagery sensors mounted on board the satellite) receiving packets of

e.g., k100 kBps, which is quite visible in imagery data types for image reconstruction purposes

on Earth (compare to [56]). Along this step, a lossless data compression is applied to make it really

efficient and easier data transmission between UE and Earth (further on this compression

technology, refer to the paragraphs after these steps or iii). Therefore, in our Conceptual View, §

3.1.2, we simplify this applicable technique between the data compression criteria and acquisition

agents, hence packetizing data is encapsulated on the signal acquisition portion of our system.

4) The output signal is a compressed signal ready for delivery to Earth at the speed of light or even

alternative speed beyond this barrier speed limit proposed in §2.1.

5) Data is sent to Earth via the tail sensor which could await further instructions from Earth (an

uplink) in case of software-hardware problems aboard the satellite.

Fig. 1 Critical steps (exception handling routines):

0) This pre-step reiterates ―Step 0‖ from the regular steps.

1) The UE receives an e.g., extremely hot stellar object (like our Sun) via its Fuzzy Sensor. The

fuzzy sensor is active at all times satisfying fuzzy states or multi-valued logic of the temperature

according to its four-state detection ability e.g., extremely hot, extremely cold, somewhat hot and

somewhat cold temperatures (see Fuzzy logic [33, 34])

1
 Blob Computing [53], relative to the lossless data compression (LDC) algorithm presented by Alipour and Ali in 2010

[6], or see exemplar iii below.

9

2) The power subsystem accumulates energy on a regular basis, from the second plan (upper-level)

or wing sensors (Fig. 2) as they convert light energy to electricity (charge and electric current).

The power system also reports fluctuations coming directly from the fuzzy sensor as an extra

energy resource to the component controller/voter subsystem which ultimate triggers the control

functions for exception handling routines.

3) A- While CPU 02 is monitoring such events since Step 0, it instructs through a voting state an

actuator to operate in terms of running the blower component inclusive of the fluid flow in the

highly-light weighted, durable, flexible, resistant carbon nano-tube (CNT) shield (see also Fig. 2).

Before this, the air in the chamber is depressurized to create an air flow. This enables the

controlling system to cool off the external and internal subsystems. The blower is activated only

under extreme temperatures affecting the internal parts of the UE. B- In a different scenario, say,

navigation, the actuator converts the electric signal to a thrusting power releasing the compressed

gas into space to create a bodily reactive motion (see also ii). C- In another scenario, under intense

gravitational fields causing extreme pressure on the UE body, the thrusters reactivated to escape

from the field, and are relative to CNT inflation protocols (material expands or swells outward) to

keep UE structural integrity intact on its hardware components indeed. This characteristic is

defined within the limits of the CNT shield material.

Fig. 1 Highly-critical steps (failure handling routines):

0) This pre-step reiterates ―Step 0‖ from the regular steps.

1) The UE experiences some mechanical, hardware or circuit failure based on some too-late to-

compensate situation. The system is equipped with relevant e.g., circuit-breakers, backup

components (compensators) and backup paths within the backup subsystems domain, reroutes and

switches from a faulty set of components or the failed circuitry to a new one (the blank area is

occupied with these backup components). Under extreme situations where the circuit is on fire, the

extinguisher shown in the system, which is highly symbolic, gets rid of the flame with a relevant

chemical agent. However, the system is so-deigned in terms of containing such chemical agents

stored in the wall of the UE system; say the CNT or the internal lower layers of the shield, and in

such moment, the wall holes adjacent to the damaged area release the agent to extinguish fire.

Other holes are sealed and would not allow further wastage of the agent to unnecessary healthy

parts of the system. (Further feasible backup examples are given for the UE system in the

following paragraphs.)

Exemplars and further descriptions/specifications of Fig. 1 components:

i. The backup battery cells located in the power subsystem are in two forms: one for instant use,

which is rechargeable by switching to its neighboring cells when running low; the other, is for

long term use. We suggest the use of carbon nano-tubes (CNT) paper batteries (CNT-PB) due to

their size and physical characteristics operating beyond a typical industrial battery in use. They act

as electrodes; allowing the storage devices to conduct electricity. The CNT battery, which

functions as both a lithium-ion battery and a super-capacitor (or ultra-capacitor), can provide a

long, steady power output comparable to a conventional battery, as well as a super-capacitor‘s

quick burst of high energy—and while a conventional battery contains a number of separate

components, the paper battery integrates all of the battery components in a single structure,

making it more energy efficient [11]. It exhibits long life with little degradation over hundreds of

thousands of charge cycles. Therefore, due to the capacitor‘s high number of charge-discharge

cycles (millions or more compared to 200 to 1000 for most commercially available rechargeable

batteries) it will last for the entire lifetime of most devices. Rechargeable batteries wear out

http://en.wikipedia.org/wiki/Supercapacitor
http://en.wikipedia.org/w/index.php?title=Charge_cycle&action=edit&redlink=1

10

typically over a few years. The CNT-PB can help in conjunction with the prolongation of batteries

lifetime by acting as a charge conditioner, storing energy from other sources for load balancing

purposes and then using any excess energy to charge the batteries at a suitable time.

ii. For the UE navigation system, we considered a standard thrusting subsystem [5] equipped with

compressed gas to spew out particles when decompressed into space, which is based on Newton‘s

third law,
2
 causes a reactive motion for the satellite‘s body. It gives a drivability function to the

satellite, changing course from its current direction. In the long run, in case of running out on this

particular energy source (of pneumonic type) , we also considered balancers that merely use a

physical object to apply force to a corner point of the satellite‘s body. The actuating device obeys

Newton‘s second law of motion F = ma, with an object with mass m undergoes an acceleration a,

which outputs the opposite direction (Third law) of the force F, or –F, enabling the satellite to

move in a particular direction. The output is equal in magnitude between the applied force F and

exerted force –F, for a measurable momentum of the body in the right direction. This

measurement is satisfied by the sensors installed onboard in the same area. Of course, this is

commanded by the CPU 02 subsystem for this electric to mechanical conversion of energy when

necessary.

iii. The lossless data compression (LDC) does not have to be on the basis of Shannon codeword

standard [7], which might take some time in compressing data losslessly due to the random

character/symbol repetition in data products between source and the units onboard [6]. In fact, a

new LDC technology could be incorporated or utilized as one of the authors has already

demonstrated for fixed compression ratios delivering double-efficient, quadruple-efficient, etc.

data in a lossless manner. The logic or premise of the lossless compression model is called fuzzy

binary AND/OR compressor (FBAR). This has been already introduced and evaluated on a smaller

scale of data integration by Alipour and Ali, in 2010 [6], proving, no matter the amount of input

data, using an ASCII-based translation table (TT) algorithmic component as a static key, gives

50% output, and using 2TTs in the program gives 75%, using 4TTs gives 87.5%, … so forth, as

predictably-fixed compression ratios. In fact, a precise timing of data reception and thereby

delivery between communication points is evident between Space and Earth under almost all DB

circumstances. For one, the way data is allocated between the memory system and its DB

application, would then be normalized in terms of its partitioning, thus resulting in ‗predictable

spatial and temporal limits‘ of satellite to Earth communication levels. Moreover, the delay point

or any time allocation for compressing data is resolved by having the multiprocessor architecture

design in each CPU executing parallel processing scenarios. In result, real-time LDCs are

obtained. The FBAR application, as a sample to our information levels could be realized at the

Application Software Layer in § 4.

 The overall exemplars, descriptions, specifications of Fig. 2 components relative to steps:

 In Fig. 2, however, we focus on the solar panel or energy source system. Its energy provider

conductors and transmitters comply with the principles used in other architectures, visible in

electronics like, photodiodes which convert light to electricity based on Einstein‘s photoelectric

effect [30, 31]. The light comes from some stellar body e.g., our Sun, and converted to an output

charge into the lower level, the power subsystem components of Plan A (Fig. 1). This conveys

Routine Steps # 1 to 3.

2
 For every action, there is an equal and opposite reaction.

11

Fig. 2. The UE Satellite hardware topology (Plan B), representing the wing is comprised of solar panels (a group of

solar cells) and CNT shield with relevant functions for actuation on the mechanics of the wing, signaled from the lower

plan, Plan A (see Fig. 1). This plan also shows the power source for such Plan B actuations as cumulative energy

converted from Sun rays to electricity or other means necessary across Plan A‘s system.

12

Fig. 3. The UE Station hardware and software topology on Earth, receives data from the UE satellite from space for

further processing, including a control panel emergency and communications protocols, security, backup and update.

 From the lower-level, or Plan A, it is evident that one of the main power subsystem components is

the electric motor source which after being supplied by electricity, converts the latter form into

13

rotary motion on the upper level or wing axes. This conveys Critical Step # 1 and partly maps to

the following two steps as a trigger function to their components.

 The wing could bend, contract or extend for critical situations and celestial body confrontations,

like asteroids (Critical Step # 3). A good example is the asteroid belt [35, 36] between planets

Jupiter and Mars, where it accumulates travelling bodies from other parts of space heading Earth.

Jupiter‘s G-field traps them due to its intensity. The UE body must maneuver in case of attempting

to pass through this belt when uncertain asteroid families form in this belt and thus collide.

Despite of multiple unmanned spacecraft have traversed this belt without incident due to the

asteroid material is so thinly distributed, still these asteroid families could cause incidents not

mainly on this belt, but maybe elsewhere where the UE mission prolongs. The wing dynamics

must therefore satisfy the given requirement for such situations.

 Perceivably, in Critical Steps # 0 and 2, we have also included the CNT shield in our design

parallel to the wing‘s backup hardware (wing replacement). It stretches out to protect the most

vulnerable parts of the wing in case of failure on structural integrity due to extremely high or low

temperatures (even pressure) causing the tile to collapse beyond compensation. This is triggered

by lower plan sensors and those sensors embedded within the nano-tube structure, since a CNT in

its atomic junction could act like a sensitive diode or rectifier [10, 11]. It could simply conserve

energy when necessary, not only for the internal system, it could also act as a physical protection

cloth due to its flexibility and resistance factors. In particular, using the multi-walled version

assists these physical properties in practice [12].

 For trapping space dust or interstellar dusts passing through our solar system, which UE might

confront with, inclusive of thermal insulation properties,
3
 in its 50-year journey, we considered the

use of manmade aerogel (Critical Step # 0). The rationale to this is based on samples already in

use aboard probes and spacecrafts by NASA. In particular, NASA used aerogel to trap space dust

particles aboard the Stardust spacecraft. The particles vaporize on impact with solids and pass

through gases, but can be trapped in aerogel. NASA also used aerogel for thermal insulation of the

Mars Rover and space suits [15, 16]. The UE could collect incoming dust samples and perform

further analysis by its internal sensors while on a separate issue, protecting its internal and panel

integrity for its thermal insulation properties. In particular, the bus or UE body is clothed with not

only different types of CNTs, and Aerogels for advanced thermal and sample collection properties.

A good example as a combined material of CNT and aerogel with new emerging properties is

researched as ―CNT Aerogels‖ by Bryning et al. [17] (or [18]).

The overall exemplars, descriptions, specifications of Fig. 3 components relative to steps:

 In Fig. 3, the heart and brain of UE operations on Earth is illustrated. It represents software and

hardware components, subsystems, storage, backup and primary-secondary data transmission

protocols on display, to the UE satellite in space relative to its personnel active on ground at the

control panel (Highly-critical Steps # 0 to 4, relative to Regular Steps # 3 to 5). The ambit of all

controls and operations occur in a private manner. In other words, the scope of human and

machine activities is limited within the boundary of the station per se. The reason to this is to

avoid obvious security breach or even a system hack or infiltration. Even assuming a person tends

to hack information from the wireless portion of the project (dish-satellite), against Regular Step

2, the person must be equipped with a lossless data decompression (LDD) algorithm with an

3
 It disallows heat to escape from the UE container or entering it, whereas the shift of insulation behavior (change of

position, shape, etc.) between temperature levels varies due to CNT aerogel characteristics, and thus reactive to extreme

temperature data triggered from thermal sensors onboard.

http://en.wikipedia.org/wiki/NASA
http://en.wikipedia.org/wiki/Space_dust
http://en.wikipedia.org/wiki/Stardust_(spacecraft)
http://en.wikipedia.org/wiki/Thermal_insulation
http://en.wikipedia.org/wiki/Mars_Rover
http://en.wikipedia.org/wiki/Space_suit

14

FBAR key (TT file) to decompress incoming data as specified by Regular Steps # 0 to 3.

Therefore, without this key and a dynamic key updated on a daily basis (DB dynamic index

updates), external or local infiltration is impossible. This is indicated with an LDD layer

accessing a static key at the Server level where real-time processing of data happens (Regular

Steps # 3 and 4). The multi-parallel processing is performed by the supercomputer on the

foreground of the centralized data system.

 To prevent latencies between parallel CPUs, we use the latest supercomputer maintaining the

speed of light communication intact, regardless of exhibiting 1-5 microseconds latencies, based on

Amdahl's law speedup factor on the optimization part is obtainable [28, 29]. These technological

upgrades or componential improvements (Future Steps # 0 to 2, labeled with empty circles)

relative to addressing bottlenecks, of course, must not intervene directly in the communications

process and data transactions between DBs and UE system. Downtime, mean-time-to-failure

(MTTF), mean time-between failures (MTTB), and other factors are also considered, and thus

switching from a current supercomputer, mainframe or any operating server to its backup,

auxiliary or array on a provisional scale, is inevitable in our design scale and integration (Highly-

critical Step # 5). This entails a RAID system in our design implementation which provides data

redundancy, fault-tolerance, data reconstruction for data retrieval purposes, error-detection and

correction features, etc. In particular, we strategize in terms of uploading the station‘s compressed

data to home-orbit secondary satellites, downloading all information to a second station which

could be in any other geographical location occupied with other project(s) on Earth. The remote

backup station has basic standby system components with parallel upgrades to the current UE

station and receives compressed data in case of the UE main station on Earth breaks down. The

signal bandwidth limit is not of significance, since we use the latest LDC algorithm with encoded

codes for ultimate compression ratios at the station, supporting asynchronous stream-load

communication (in case of uploading to more than one secondary satellite in parallel), however,

on-spot transmission of data to these satellites depends on the satellite tracking program for a

trustable upload/download to the relative base on Earth.

 For this privatized UE station, a routine security check on staff, incoming packages or arbitrary

visitors denoting Critical Steps # 0 to 4 is considered to keep the organization assets secure

enough relative to ongoing sensitive indoor operations and services.

1.2.2. An Early Core Evaluation

Choice, Rationale and Solutions

1- Why the Usage of Two CPUs According to the Peer-reviewed Evaluation? What about having

a real-time based solution in the UE design?

Our choice and motivation: ―The Latest‖, by definition, here denotes that, microprocessors to be built as

tiny as nanostructures, e.g., incorporating CNTs, where one CPU could be comprised of multi-core or

many-core technology [44], as well as its future generations! We could, for UE‘s 50-year mission say that:

a metamorphosis of von Neumann architecture shall be recognizable amongst its subsystems. In a scalable

architecture for its Global Analysis (§2), a manageable 2n-CPU hypercube software scenarios [48],

benefiting from software switching hypercube models [55] for its efficient communication/transmission

level, is acquirable. The hypercube in fact assists any error codeword occurrence by traversing its hamming

15

distance (Murdocca & Heuring, §9.4 [50]), and thus correcting it by the CPU. So, the many-core CPU

solution is real-time based as well as fault-tolerance from quality our requirements.

Fig. 4. A solution to our Execution View addressing bottleneck against usual architectural techniques used in the

software application layer; ↓ denotes time-length reduction or decrease, and ↑ denotes time-length extension or increase

Rationale: The roles of which dedication is done either to incoming raw data parallel to onboard data.

This was the initial reasoning of our choice in separating a set of dedicated 2n-CPU02 cores for hardware,

from a dedicated set of 2n-CPU01 cores for incoming and outgoing signals on sight. All cores are in fact in

communication, but cores from CPU02 monitor and control real-time events on cores of CPU01 as well as

other spacecraft hardware components in parallel. This proves that all deadline executions are real-time, no

matter how many entities are not communicating directly/asynchronously, since cores are in

communication in parallel satisfying two time-cycles per core. The ratio of the time-cycles or rT is an

integer divided by other cores‘ time cycles, giving a real value approaching 0 seconds, showing a 2 time

cycles divided by 2n real-time scenarios, or

this is an asymptotic performance solution [54] which is crucial to have in the UE system. In fact, the more

cores managing data, the closer to 0 seconds executions for data receive and delivery. Therefore different

UE subsystems are not bound to one CPU each, a number of CPU‘s or cores are used for each subsystem to

read and execute more than one instruction at a time (contrary to a single core CPU) [44] relative to this

(1)

16

real-time bound/constraint solution. This execution behavior which satisfies parallel tasks is further covered

from the same architecture view in § 5.

Inclusion: Based on the system evaluator‘s suggestion to have a real-time based system on-board, we have

now included that all communication levels between the many-core or multi-core processors and their

hardware components are real-time relative to the outgoing data to Earth, ―which is not real-time‖. The

reason is due to the increasing distance when UE reaches the far ends of its mission, latency on receiving

information is inevitable due to that data must travel minutes, hours, days,
4
… light speeds to reach Earth.

Solution: We included a microchip software-hardware solution onboard the satellite to perform real-time

between UE and Earth when far from home in space. This is well-explicated in §2.1, instead of waiting for

hours, days, … for the current information onboard to reach the base on Earth, bending time in terms of

superposition of the data carriers, or hot electrons [47] designed in the memory (with a tuner on the

send/receive frequency) The bottleneck problem is further resolved in terms of sub-tasking in cycles on a

software level (see paragraph on motivation) as explicated by the above equation using 2n-CPU cycles.

This is hereby illustrated in Fig. 4, above:

This bottleneck solution in Fig. 4, on shared memory and/or accumulated data, is included in our

Execution View in terms of compressed space and static space (memory), §5, specifically portraying the

importance of how two main processors could work together in parallel dealing with specific data for a

read/write operation, asynchronously. One main processor deals with priority data as raw values only, and

the other, deals with assignments to the given tasks on prioritized signals onboard the satellite. Both operate

asynchronously with a semaphore without affecting the performance, since no queue carrying state signals

for the hardware controller is delayed or overflowed against the queue on incoming/outgoing raw data

between Earth and Space. If so, the priority is already privileged by the ‗software switch‘ in the hypercube

of processors (first paragraph above), which means no interference of real-time critical tasks against data

compression and relay tasks explicated in §5 due to having alternative routed and communication paths (or

Fig. ExV4, which also benefits Eq. 1). One last not would also be that tasks allocated for the one main

processor does not have to wait for the tasks allocated for its parallel (other main processor). In other

words, the group of certain tasks handle operations related to hardware managements, whilst the remaining

focus on just passing the information no matter how minimal or maximal in deliverables to/from Earth

during executions.

Therefore, there will be ‗no design transformation‘ of the current core architecture based on this evaluation

and merely as a refinement of the architecture on the views. (Later included in § 2.1.7.)

2- Will the database get full during transmissions especially when the UE learning-based

system grows in space?

For the learning-based system, the new nodes that are created and added to its agent-based intelligent

network (as software nodes), some of the older nodes become abstracted or replaced with shorter

executables, thus keeping only vital instruction intact, and the rest, relayed to Earth or erased. This, of

course, entails the processing solution brought up in Q.1. It learns not only from errors, for the space

environment and previous experiences (scenarios like e.g., Bob in § 2.1), next time, similar conditions will

not apply to the UE software-hardware failures in space. This has been mainly discussed, and exemplified,

4
 It relatively takes (½ day – 8.3 minutes), for data to reach Earth, if UE is on the other side of our solar system.

17

with our pseudocodes in §6.1.2 from a Code Architecture viewpoint, which conveys to adaptable UE

scenarios in Space, and thus, its efficiency in communications, both internal (onboard circuitry) and

external (from/to Earth). On the external communication level between Space and Earth, there certain

space-time physics barrier points, or limitations of communication, which are inevitable during the UE

mission in space. This particular issue is addressed in §2.1 of our Global Analysis worst-case and normal-

case scenario factors (or see, Eq. 3 with its relative discussions).

Therefore, there will be no design transformation of the current core system of the UE architecture based

on this evaluation. However, a refinement of the current architecture pointing out how strong the design has

integrated such solutions inclusive of any potential flaw (e.g. on the time-delay or efficiency part) later

included in § 2.1.7. We further emphasized that we have already considered in our initial choice of the

design on views through our strategies satisfying quality requirements during analysis.

Further relative evaluation is addressed in §6.1.3 of the current report.

1.2.3. UML Use Case Diagrams for UE Hardware-Software Specification:

A Preamble to Global Analysis Scenario Factors

Fig. 5. This is an extension to Fig. 3. This figure represents a UML Use Case diagram in terms of legitimate actors of

the system. All of these actors, apart from the inherited time task called Time-to-Failure, indicate certain actions in a

cyclical manner from bottom tasks to top-level task in the system. The ―Time-to-Failure‖ actor is indeed unique as

18

performing an inheritable subtask activity on hardware-software components. It initiates when a component is

destroyed, thus making the Destruction Engineer (the co-actor), aware of the functioning limit to the application, before

being installed onto the UE‘s centralized data system and elsewhere (Fig. 3).

Fig. 5. The Control Panel + Space-Earth-Space Use Case (narrative style):

Name: Access Control Panel

Identifier: UC 19

Description: Let operator access the Control Panel.

Pre-conditions:

 The Operator is logged into the system.

 The Operator has gone into the initial checks to verify that he/she is the person eligible to access

the control panel (redirected from the Security Use Case)

Post-conditions:

 The operator on Earth will be enabled in the station as a UE expert to use controls parallel/relative

to data observation from UE in space.

 Basic Course of Action:

1. An operator wants to access controls.

2. The UE in space delivers data to the UE station on Earth.

3. The operator visually inspects incoming data whilst being processed.

4. The operator determines that the data is showing a new UE system behavior in space.

5. The operator uses relevant controls to access system core for addressing this issue.

6. The operator sends relevant data via system core to UE system for carrying out new instructions.

(an extension is given in Fig. 5)

7. The use case ends.

An extension to Fig. 5 illustrating other use cases, show other legitimate actors of the system in Space and

Earth in-communication. All of these actors are unique and have strong technological dependencies to one-

another. The ―Time‖ actor is indeed unique as performing an inheritable subtask activity on hardware-

software components for a signal send-receive transmission. It initiates when a component is active for

deliverables parallel to receptions between Space and Earth, thus making the operator at the station, aware

of the functioning limit to any reception, otherwise uplink conditions (see, §2.1 scenario) to the UE system

are proceeded. A concealed co-actor is evidently a compressor which initiates a lossless data compression

(LDC) considering data space and latency issues for processing it, which are tackled with according to

technological upgrades as a solution to the light speed transmission limit (see next section).

2. Global Analysis
The key characteristics that must be met by the UE engineering system can be classified into human

computer interaction (HCI) factious scenarios at the Earth and space levels, product factors, technological

factors, and organizational factors entailing security factors during/after development. The ―factious

scenario‖, here, we mean disobedient or rebellious situation occurrences, either on purpose or otherwise

e.g., some security breach issue, or some human error at the control panel, or some erratic program

behavior from space or the system, mechanical failure, etc., which are all against the healthy system‘s

status report: ROM-based real-time diagnostics, checking UE hardware and software components. Such

scenarios are significant for our global analysis as the UE‘s system scenario factors indeed. We commence

with analyzing a scenario against a character called Bob working at the UE station on Earth experiencing

problems from space where his expertise will come handy as a trained employee at the center. In fact, we

19

execute a scenario as an algorithm with actors involved for a Yes/No already-stipulated and answered

actions from one state of action to another (its subsequent). It is thus, the plan for its engineering

predecessors, UE design pioneers and post-conditions to assess how the situation was handled under such

extreme conditions with respect to time and global action report(s). In the following section, one could

realize that many factors defined in the ISO/EIC 9126-1 software quality model with six main quality

characteristics: functionality reliability, usability, efficiency, maintainability, portability, are identifiable

throughout the course of Bob-UE system-Bob actions and reactions. For instance, from the usability

perspective, overhead information [37] is managed by the control panel user or ―Bob‖ correcting errors

aboard the spacecraft through a simulation pad identifiable in Fig. 3.

2.1. System Scenario Factors, Limitations and Solution
Bob, the UE central command operator has normal sight and no physical or perceptual impairments

onboard the satellite when he studies his monitors and diagnostics screens (Fig. 3). His shift started at 11pm

and it is now 5am in the morning. So far, the command center has been operating within normal parameters

and the current alarm state is therefore green.

Assumptions: Assuming the ongoing events in the satellite are delivered as delayed data at some point of

time close to 5 minutes, since the satellite transmits data at the speed of light
5
 and now is approaching

Mercury, thus it takes more than 4 minutes for its real-time status report data to reach the station. Luckily

Mercury is at its closest point to Earth.
6
 The UE has now, successfully completed its mission over Mercury

approaching an orbit slingshot via Venus towards the remaining planets before exiting our solar system

(similar to Cassini probe mission [27]), which could take years after its first exit from the Sun‘s

gravitational field to the ends of our solar system.

1. Bob notices the internal temperature of the UE bus-chamber has risen very rapidly.

2. He also notices for some odd gravitational shift between nearby planets Mercury and Venus due to

the after-effect of a solar burst/flare from the Sun (hard to predict [24]), UE in consequence has

altered its course wrongly-directly toward the Sun!

3. The diagnostics show that the intense electromagnetic radiation caused the unit to miscompute the

actual course with the wrong one as correct data!

4. The component controller subsystem onboard has already executed necessary temperature

reduction protocols via the depressurizing system with its fluid CNT coolers from both inside and

the shield (refer to Fig. 1‘s yellow signal flow).

5. But the system fails to automatically navigate the UE due to some hardware-software failure in

commanding two of the thrusters to avoid getting too close to the Sun.

6. Bob realizes he must immediately change the satellite course manually and target the right

direction by sending the overriding coordinates to the UE system to correct this

7. Luckily, the simulation pad on the control panel is connected to the mainframe server and has the

predetermined coordinates relative to planets, celestial bodies, objects, etc. in space, so Bob‘s job

won‘t be errored in trajectory calculations, and thus UE course correction telemetry.
7

8. So, he runs the simulation program and inputs the coordinates accordingly, once he estimates with

his own manual calculations for comparisons, if a genius not to waste further time!

5
 The Speed of light or Celeritas as a so-called electromagnetic constant c or light speed in Physics, in terms of vlight = c

 300,000 Km/s.
6
 77 million kilometers / speed of light 4.28 minutes; this is a normal-case scenario, unavoidable to have in the

worst-case experienced by Bob.
7
 Telemetry is vital in the development phase of missiles, satellites and aircraft because the system might be destroyed

after/during the test. Engineers need critical system parameters to analyze (and improve) the performance of the

system. Without telemetry, these data would often be unavailable. (See also [32].)

20

9. He goes to the Alarm Control Panel on the far right of the main control panel and presses '+' twice

(as it is starting off in green state)

10. This allows other experts to be alerted near or in the vicinity of the station and thus help Bob, just

in case: the station has no means of global network communication due to the sensitivity of the

project and all personnel for such situations must be checked-in and operate on site. However, the

system is open to secondary security protocols in case of disaster-related issues to switch from this

station to another geographically-located remote station, in aim of continuing operations on its

behalf.

11. The Emergency Confirm button glows red

12. He moves across to the ‗Manual Override‘ panel on the far-left of the main station control panel.

13. He selects ‗Manual Pilot‘ from the pull-down on the ‗Manual Override‘ panel.

14. He types the new value ‗1503‘ using the keypad (this is a standardized UE password scenario, 15

for ‗O for override‘ from the order of English alphabet letters, 03 staging ‗error type 3 or

critical‘, hence the combination sys: Override Critical Stage now!)

15. All thrusters are displayed for manual control

16. He navigates EU‘s on the Simulation Panel by an auxiliary component controller (backup) system

while CPU 02 operates on most functions except the thrusters due to actuation signal conversion

failure.

17. He uplinks the entire vital trajectory coordinates to the satellite which could take more than 4.3

minutes to reach the satellite instructions CPU sytem.*

18. The computer on Earth calculates that the breakdown of the internal system is imminent after it

gets really close to the sun passing Mercury‘s orbit, as UE enters sun‘s vicinity with 2000
o
C -

6000
o
C range, in < 15 days. Mercury-Sun distance/ climbing speed of 25km/s (maximum

threshold for thrusters to fall into the right course or orbit is 40 km/s), ergo, (58 million km) / (40
+

(km / s)) < 16.78 days.

19. He notices that the navigation number on the UE Navigation Target panel has not changed.

20. He realizes he forgot to press the SET button on the Manual Override panel.

21. He presses the SET button for executing the coordinates.

22. Another 4.3 minutes has elapsed.

23. An automatic audio warning sounds "20 minutes to UE trap zone" and it further displays that the

satellite is now accelerating jumping from 25 km/s to 38
+
 due to Sun‘s gravitational field influence

on UE via planet Mercury

24. All alerting systems suggest that the UE must make its move now, since this is the last chance to

perform below threshold points of an escape velocity Ve= 67.7 km/s, to sufficiently escape

Mercury‘s gravity relative to Sun‘s gravity by falling back to Mercury‘s course, from its current

position, otherwise, since there are no rockets or strong propulsion systems to act on behalf of the

thrusters, UE is absolutely doomed for the remaining days of its journey!

Note: We assume the thrusters support a maximum of 40 km/s with a good force F push for an

orbit slingshot (gravity assist maneuver) outwards to Venus‘s orbit without damaging the

neighboring equipments. On the other hand, if the UE enters layers close to the coolest layer above

Sun‘s photosphere > 500 km with temperatures ≤ 4100 Kelvins ≤ 3826.85
o
C, [25, 26], and if not

change its course to the right direction way before then, it will get trapped in Sun‘s gravity for

good. This is indeed UE‘s final demise beyond its capable CNT aerogel and other shield

materials!

25. Bob has now done whatever he could do, and hopes all the coordinates for the thrusters including

backup balancers function for the right change of course.

26. He‘ll find out after approximately 4.5 minutes what is UE‘s current status, and still the red light is

ON.

27. Bob receives incoming data from Sun gathered by UE after 4.5 minutes, including UE‘s course

change, telemetry updates from Bob, and UE unit responses onboard the satellite.

28. It shows that UE successfully escaped by launching the right course of action, not only on its

current thrusters, a slingshot on Mercury‘s orbit to escape the trap with temperature control for all

its systems through Venus

29. The audio system announces "UE navigation override protocol successful"

30. Incoming diagnostics for the next parts of UE‘s mission from the satellite is now in position.

21

31. Valuable data is now stored in the compressed DB for further analysis on the planets, including

Sun and the initial flare causing all of these problems, handled by Bob as a competent employee

working at the station despite of his natural human errors.

* Limitations to be rectified during the UE’s 50-year mission: Bending space and time for the

incoming and outgoing signals in the coming years could be achieved by e.g., particle accelerators, in

particular, tachyon emission travelling faster than the speed of light [19-21], but with safe energy scales

between Earth and the UE unit in terms of the given spectra range supported by it onboard sensory

components (See, Fig. 1).

A pre-emptive solution: P. B. Alipour, in his pre-print papers, back in 2007 [22, 23], designed a

Satellite Comlink in form of a super-helical CNT microchip or PTVD-SHAM (Figs. 1.2 and 2.1, [23]),

creating a magnetic field using the 2D electron gas and Faraday effect to collect data using parallel memory

cells exhibiting speeds of 2nc (greater than light speed or factors of c), conjecturing possible parallel time-

varying properties, and thereby transmit it back to Earth real-time (or much sooner than the expected

latency). In Fig. 3, this has been depicted on the home orbit satellite as a technological upgrade product. In

the UE data transmission scenarios, it delivers compressed imagery data after receiving from space, to be

reconstructed on-chip (CCD) via the supercomputer at the station. The technique focuses on the way

electron or charge representing compressed data is bailed-in and out into two places at the same time

(superposing). Therefore, data could by a contractible vs. expandable distance between satellite and

receiver/sender on Earth, using a tuning device mounted on the PTVD-SHAM microchip, such that these

carriers (hot electrons e) traverse memory cells on both systems UE in space, and home orbit satellite

simultaneously (compare with Fig. 4.2 [23]). This theoretically gives the expected speeds of computation

quite higher than the speed of light. For the time-varying process causing this to happen, assuming that we

have this microchip onboard the UE satellite, Bob‘s transmission scenario for his uplink procedure would

be quite reliable in reducing the estimated 4.3 minutes delay, in commanding the Satellite, down to just a

few seconds when technology progresses in virtue of signal application upgrades.

——— ―Assume in the laws of quantum physics that, any assigned value as an input is pondered to bring

about the notion of ‗uncertainty‘. On the contrary, conjecturing the notion of certain reserved locations for

data by pre-defined time in entanglement (predetermined on anticipated time) for uncertain values, is itself

upon any individual which tends to read/write data and time, understood as a ‗certainty‘ ‖! [23] ———

So, this is already designed in theory [22], whereby a well-defined funding by the UE space organization

on this microchip, is deemed to be processed and finalized for the manufacturing /fabrication phase of the

time delay-saving application. In fact, the PTVD chip stores Tdelays and at the application layer, gains a

conversive function to real-time via its algorithm = tdelay1+ tdelay2 + tdelay3 + … + tdelay n with respect to datain

(incoming from the space environment), whilst intersected with (or multiplied by) dataout (outgoing data to

Earth), with respect to current time (Earth‘s time standard experienced at the control panel), or

(3)

This occurs, if and only if, hot e-carriers representing data are superposed in location at light speed. This

relationship is elicited from [23] and thus gives a time constant Kt equal to 1 denoting real-time data

transmission (§ 2.2 of [23]).

22

2.1.1. Analyze Product Factors:

The Building Blocks for the Conceptual View

We have listed important product factors for the UE system (Figs. 1 and 2) in Table 1.

UE Product Factors (Part A: Space)

Product Factor Flexibility and Changeability Impact

P1: UE satellite features

P1.1 Application policy rules

Support software upgrade,
settings and new application
policy rules.

New settings, instructions and
rules are added when
necessary.

There is a large impact on all
components.

P1.2 Transportable main unit

The UE bus or whole body is
transportable based on
navigation subsystem and/or
interactive physical forces in
space. (The subsystem is
supported by life-time battery
or power source.)

The body must adjust
dynamically to transport in
space while not affecting
software-hardware
performance.

This affects signal acquisition,
and processing relative to
change of location in space.

P1.3 Critical detection of I/O devices

The UE satellite must
communicate with Earth (UE
station) while onboard
intercommunications between
components monitored,
processed and managed.

New forms of data are received
and updated.

This affects signal acquisition
when critical situation from
space environment or
application upgrades from
Earth, and there is a large
impact on all components if
environmental threats as new
data are experienced.

P1.4 Dynamic detection of I/O devices

The software must detect the
presence of I/O devices (CPU
02).

The CPU monitoring or control
system must handle
dynamically changing features
based on sensors or connected
internal-external devices.

This affects all targeted
components relative to the
space environment flux.

P1.5 Scalable architecture

The UE engineering system
must be scalable to support a
vital range of software while
backup hardware remains
intact.

This is fairly stable via the
partitioned database onboard
for software upgrades; this is
unstable when hardware failure
where alternative backup
systems or replacements
restore stability until
subsequent failures (if any).

This impact affects primarily
the conceptual view.

P.2 User interface

23

(dismissed)

P.3 Performance

P3.1 Real-time performance

There must be real-time
processing of raw data aboard
the satellite and display data on
Earth. Each data type has a
maximum delay specified in
terms of light speed factors
externally, and internally, close
to 0s scenarios.

The maximum delays are
negotiable in terms of signal
compensators relative to the
LDC application that provide
efficiently compressed data to
the compensator; special
microprocessor and memory
designs customized on board
and upgradable Earth-orbiting
satellites on hardware
technology, is contemplatively
imperative in design.

There is a large impact on
signal acquisition and
processing components in
terms of data reception and
relay signals.

P3.2 Processing deadlines

Several processing priority
levels are needed to support
multiple processing deadlines.

Deadlines and priority levels
could change based on changes
to the requirements or platform
before UE launch on Earth.
These levels could also change
based on unique instructions
upgrades in form of Assembly
or machine codes uplinked
from Earth to space.

There is a large impact on all
components if process
partitioning changes.

P3.3 Processing parallelisms

Several parallel processing
priority levels are needed to
support multiple parallel
processing executions.

Executions and parallel priority
levels could change based on
changes to the requirements or
platform before UE launch on
Earth. These levels could also
change based on unique
instructions upgrades in form
of Assembly or machine codes
uplinked from Earth to space.

There is a large impact on all
components if parallel
processing relative to
partitioning change in
operation synchronicities
between hardware
components.

P.4 Dependability

P4.1 High availability

The system must display
correct information on Earth,
24 hours a day, and 7 days a
week.

Requirements are stable if UE
explores a nearby planet. The
farther the satellite explores in
space, the less stable due to
information light speed with
respect to distance barrier.
Thus knowing what is
happening real-time at that
point comes too late
afterwards. (Bending time
relative to space with special

There is a large impact on all
components concerning their
real-time status when UE is far
from Earth. There is a moderate
impact on all components when
nearby.

24

Table 1. Product factors influencing the UE system.

In continue, we have listed important product factors for the UE central command systems (CCS) on Earth

(Fig. 3) i.e., control panel, centralized data and security systems, in Table 2.

UE Product Factors (Part B: Earth)

microchip design on Earth as
compensators could make this
compulsory delay near to real-
time data receptions)

P4.2 Withstand radiation, spatial disturbances, forces, objects, etc.

The UE subsystem must be
impervious to imminent
interruptions such as extreme
pressure, temperature,
radiation, gravitation, etc. in
space and avoid physical
impacts through intelligent
means on its components.

There is no flexibility and this
requirement could be satisfied
with currently available
adaptive components such as
CNTs.

This affects high-tech hardware
selection.

P4.4 Software quality

The UE deployment projects
must conform to regulatory
efficient requirements for
software quality for efficient
ways of communication
without any data loss.

There are different ways this
could be fulfilled such as
double-efficient LDCs giving
fixed time and data compaction
ratios, relative to
equipartitioned data (clusters),
etc. via relevant applications
installed onboard.

This affects nearly all design
decisions on a software level.

P4.5 Advanced-level implementation

The implementation of projects
on Earth before lunch must be
as sufficient and efficient as
possible with latest
technologies including ongoing
researched materials.

There are advanced scientific
ways this could be fulfilled.

This affects all views.

P.7 Product cost

P7.1 Hardware costs

Hardware costs for projects
must support latest-based
research at both laboratorial
and current-based hardware
pricing. Cost of almost all
components is flexible.

There is in most cases
moderate flexibility below the
spacecraft budgetary limit.

There is a large impact on all
components.

P7.2 Project development costs

The cost of verifying, validating,
and licensing projects must not
prohibit vital product pricing.

It is prohibitively expensive to
verify, validate, and license
each project independently.

Strategies are needed for
reducing these costs.

25

Product Factor Flexibility and Changeability Impact

P1: UE CCS features

P1.1 Application policy rules

Support software and hardware
upgrade, settings and new
application policy rules.

New settings, instructions and
rules are added when
necessary.

There is a large impact on all
components.

P1.2 Restorable main units

The UE centralized data and
control panel systems must be
replaceable at any time in case
of hardware failures without
affecting current operations.

Apart from components being
repaired based on MTBF factor,
there is no flexibility and
damaged components must be
replaced.

There is a large impact on
almost all components if there
is no backup system
considered.

P1.3 Critical detection of I/O devices

The CCS systems must
communicate with space (UE
satellite) while
intercommunications between
components monitored,
processed and managed.

New forms of data are received
and DB Server is updated.

This affects acquisition, storage
and processing of CCS data
center; this also affects control
panel and user-based/artificial-
intelligence-based decisions.

P1.4 Dynamic detection of I/O devices

The software must detect the
presence of I/O devices (CPU
02).

The CPU monitoring or control
system must handle
dynamically changing features
based on sensors or connected
internal-external devices.

This affects all targeted
components relative to the
space environment flux.

P1.5 Scalable architecture

The CCS engineering system
must be scalable to support a
vital range of software while
backup hardware remains
intact including hardware-
software technological
upgrades to the center.

This is fairly stable for
software/hardware upgrades;
this is unstable when hardware
failure where alternative
backup systems or
replacements are not invested
or managed.

This impact affects primarily
the conceptual view.

P.3 User Interface

P3.1 Accessible UE space engineering, information and navigation tools

The scientists, engineers and
operators at the CCS systems
must be provided with tools to
communicate with each other
as well as the UE satellite with
short and long term verification
and control performances on
internal-external data.

This is fairly stable depending
on the UE condition in space,
incoming data and security.

There is a localized impact.

P3.2 Processing deadlines

Several processing priority
levels are needed to support
multiple processing deadlines.

Deadlines and priority levels
could change based on changes
to the requirements or platform

There is a large impact on all
components if process
partitioning changes.

26

before/after UE launch. These
levels could also change based
on unique instructions
upgrades in form of
decompressed data at the
station.

P.3 Performance

P3.1 Real-time performance

There must be real-time
processing of raw data at the
station. Each data type has a
maximum delay specified in
terms of light speed factors
when reaching the station.

The maximum delays are
negotiable in terms of signal
compensators or special
microprocessor and memory
designs customized on board
and upgradable Earth orbiting
satellites on hardware
technology.

There is a large impact on
signal acquisition and
processing components in
terms of data reception and
relay signals.

P3.2 Processing deadlines

Several processing priority
levels are needed to support
multiple processing deadlines.

Deadlines and priority levels
could change based on changes
to the requirements or platform
during development.

There is a large impact on all
components if process
partitioning changes.

P3.3 Processing parallelisms

Several parallel processing
priority levels are needed to
support multiple parallel
processing executions.

Executions and parallel priority
levels could change based on
changes to the requirements or
platform during development.
These levels could also change
based on unique instructions by
software upgrades.

There is a large impact on all
components if parallel
processing relative to
partitioning change in
operation synchronicities
between hardware
components.

P.4 Dependability

P4.1 High availability

The system must display
correct information on Earth,
24 hours a day, and 7 days a
week.

Requirements are stable if UE
explores nearby planet. The
farther the satellite explores in
space, the less stable due to
information light speed with
respect to distance barrier.
(Bending time relative to space
with special microchip design
on Earth as compensators could
make this compulsory delay
near to real-time data
receptions)

There is a large impact on all
components concerning their
real-time status when UE is far
from Earth. There is a moderate
impact on all components when
nearby.

P4.2 Withstand disaster-related and/or security breach issues

The CCS systems must be
impervious to natural,
environmental and human-
disaster-related interruptions
such as sabotage, weapons of

There is no flexibility and this
requirement could be satisfied
with currently available
technologies on material
physics and architecture.

This affects civil engineering, as
well as hardware-software
engineering material selection
and design on both backup and
current systems targeted

27

CCS = UE centralized command systems which comprises of centralized data control panel and security systems.

Table 2. Product factors influencing UE CCS systems.

The features factor provides the product requirements visible to the user at the station parallel to the

satellite before and after launch. The product supports thousands of customized engineering, policy rules

and cutting-edge technologies in terms of hardware and software, while all devices onboard the UE are

controlled, monitored and managed by are mostly software applications.

 The duration for data transmission varies as pointed out in our scenario factors, § 2.1, for the

external data transmission factors from space to Earth. The reason, as determined and specified, is

that during the 50 year mission, such as the speed of light barrier is always in place relative to the

far distance travelled by the UE.

 No matter how we design the transmitters, the acquisition devices must remain in a standby mode

in terms of minutes, hours or even days to receive information from space to Earth.

o To this account, light-weighted CNT materials were strong candidates to even

manufacture the main parts of our sensors, CPU, capacitors, etc., making the job of our

mass destruction, earthquakes,
hurricanes, etc. on Earth.

components.

P4.4 Software quality

The CSS relative to UE
deployment projects must
conform to regulatory efficient
requirements for software
quality for efficient ways of
communication without any
data loss.

There are different ways this
could be fulfilled such as
double-efficient LDCs giving
fixed time and data compaction
ratios, relative to
equipartitioned data (clusters),
etc. via relevant applications
installed at the station.

This affects nearly all design
decisions on a software level.

P4.5 Advanced-level implementation

The implementation of projects
for the satiation on Earth must
be as sufficient and efficient as
possible with latest
technologies.

There are managerial
engineering ways this could be
fulfilled.

This affects all views.

P.7 Product cost

P7.1 Hardware costs

Hardware costs for projects
must support latest-based
research at both laboratorial
and current-based hardware
pricing. Cost of some
components at the station like
the mainframe or
supercomputer is flexible.

There is in most cases
moderate flexibility below the
CCS systems budgetary limit.

There is a large impact on all
components.

P7.2 Project development costs

The cost of verifying, validating,
and licensing projects must not
prohibit vital product pricing.

It is prohibitively expensive to
verify, validate, and license
each project independently.

Strategies are needed for
reducing these costs.

28

system entities much easier than ever for data transmission and thus communication

paths, down to the execution level.

o Thus, the 2n-core CPU solution is plausible due to the compactness of the hardware

product incorporating CNTs, and thereby for its software and instruction set-handling, we

strategized in terms of partitioning any bottlenecks emerging from the BDB system for

system processors, which is already alleviated with the fixed LDC solution (recall §1.2.2).

o This results in fixed execution points between static access of data points and hardware

components. In particular, based on the findings made by Alipour on the fixed LDC [6],

for an incoming flow of 61kB data (maximum allocation), gives a maximum delay of 0.3

sec. for 87.5% compression (x86 architecture) with a static information 8MB satisfies

256256= 65,536 unique combinations.
8
 This is quite suitable for RGB true-color (based

on high-color {R}, {G}, {B} discrete 1x2 setting, now intersecting as 1x3 setting)

combinations, once image content sent in red, blue, and green to earth. Once received

from this end, mixing them to produce high resolution images is an easy task.

o The n-core CPU solution also ensues solutions on direct error correction issues rather

than ―detection then correction‖ issues by software evolutionary factors, § 2.1.4, such as

the ABL algorithmic sample, analyzed and explicated in our Code View architecture § 6.

 Furthermore, the idea to incorporate PTVD-SHAM hardware component in our system, is

hypothetically-extremely useful to address the light-speed problem causing latency issues,

transforming UE into a real-time system, for our communication protocols with the satellite. The

following table, further expands on the specified duration limits of our system, both in Space and

Earth raised in its product factors.

Processing deadline Maximum Delay Delay Reduction by 2n-Core Inclusion with relative

Adaptive Software Algorithms (Semaphores)

In Space

Main signal state processing delay 0.8 s 800 msec.0 s

Compressed state processing delay 0.4 s 400 msec.0 s

Local waveform processing delay

with compression

0.2 ~ 0.3 s 200~300 msec.0 s

Relay pulse delay to Earth 1.1 s to s 0 s

On Earth

Local processing delay on Earth apart

from simulation processing *

0.4 s 400 msec.0 s

Drift in blip/beep stream 50 msec. 50 msec. 0 s

Alarm annunciation delay 500 msec. 500 msec.0 s

Relay pulse delay to Space 1 s to s 0 s

Table 3. UE Performance expectation in space relative to Earth.

* Simulation processing depends on the input variables and the newly-arrived information from UE, which could vary

up to a few minutes relative to real-time human-based decisions. It also heavily depends on the size of the

decompressed data after receiving compressed data concerning the UE status in space for a solution.

For example, the relay pulse delay, depends on the maximum permitted delay with a standard CPU or

worst-case scenarios happening aboard the satellite. Hence, the 1.1 sec. delay is logical, assuming the two

parallel main processors behave concurrently, the one dedicated to data compression is disregarded, thus

8
 Each integer value represents one pixel in the combinations‘ set, and compared to textual type LDC giving 50%

compression ratio, this would be indeed significant (for the latter, 32 MB is required according to [6]).

29

giving 0.8 + 0.3 = 1.1 seconds. We have therefore applied the same logic to the systems here at the station

to communicate with UE in space.

The product factors related to performance refer to the real-time processing requirements of the

system. The compression technology adhere is a solution to packetized local information between process

steps as filters to maintain this performance at its highest level possible (recall Fig. 1, Step # 3 relative to

description iii). We now introduce the technological factors corroborating with the above table.

2.1.2. Analyze Technological Factors:

The Building Blocks for the Conceptual View

UE Technological Factors

Technological Factor Flexibility and
Changeability

Impact

T1: General-purpose Hardware

T1.1 Processor type

The system has a signal processor,
two main parallel 2n-core
processors, one dedicated to BDB
transactions, and the other for
voting and monitoring hardware
components. All of these
processors are in a collection of
the 2n-core technology.

For the main processor, the
CPU type is likely to change
during the 10 year
development cycle (before
launch.)

There is no impact unless the
custom real-time operating
system (UE RTOS) changes

T1.2 Processor number

2n-Core processors, two main
processors onboard the UE for
specific applications

The number of cores may
increase before launch

There is a need to support
distributed computing.

T1.3 Memory and database

 A base fixed 32MB memory for
data compression. For sensory
devices and many-core CPU
technology, we proportionally
require 2n-32MB as well as their
relative code. For relay, a PTVD-
SHAM concentrates stored
information with low speed (like
flash memory) to generate a
barrier-breaking speed on the
signal (accelerating it). For static
access and change of controllers,
we considered the usage of
EPROMs.

There is no flexibility once
UE is in space

This places restrictions on
implementation.

T1.4 Diskless system as backup

30

All sensory devices, super-
capacitors could store information
in case of fresh or checkpoint
backups/restoration, in form of
standard data packets when
necessary.

There is no flexibility once
UE is in space

This, to some degree mitigates
restrictions on T1.3

T.2: Domain-specific Hardware

T2.1 Input/output system

There are many types of input and
output devices onboard the UE.

On the software side for new
types and upgradability to
manage this domain is
flexible (see T3.1). On
hardware, no flexibility.

There is a large impact on
acquisition components

T2.2 Processing deadlines

Several processing priority levels
are needed to support multiple
processing deadlines.

Deadlines and priority levels
could change based on
changes to the requirements
or platform before UE launch
on Earth. These levels could
also change based on unique
instructions upgrades in
form of Assembly or machine
codes uplinked from Earth to
space.

There is a large impact on all
components if process
partitioning changes.

T3: Software technology

T3.1 Distribution

The UE RTOS operating system
must support software
distribution from the server or
services provided at the station on
Earth. The local distribution on
the client/server part at the
station on Earth must provide
support by its operating system.

If the operating system
doesn’t support this, the
programmed algorithm (e.g.
agent-based learner or ABL)
must provide a minimum
service for evolving the
operating-system. The
operating system at the
station on the other hand,
must provide these local
services.

Additional components during
uplinks (upgrades/new
packages) to UE in space, as
well as local operations at the
station on Earth are needed.

T3.2 Reentrant code

The custom operating system
should provide full-support for
multiprocessing.

If the operating system doesn’t
support this, portions of the
software must be written as
reentrant code.

It is difficult to write correct
reentrant code.

T3.3 Code portability

The product must be ported in
form of uplinks from Earth for
the custom operating system,
which could force a change in
software platform.

A change in hardware is not
possible. Adaptive physics
scenarios from space could
emerge, or better data
management issues (like a
newly crafted compatible

On the main processor, there is
large impact on everything
using UE RTOS and inter-
process communication (IPC)
services. The relay and
acquisition components

31

Table 4. Technological factors influencing the UE system.

2.1.3. Analyze Organizational Factors:

The Building Blocks for the Conceptual View

UE Organizational Factors

compression technology) which
forces a change in the software
platform.

relatively allude to the changes
made in scalability of
compression that entails
updated code combinations.

Organizational Factor Flexibility and
Changeability

Impact

O1: Management

O1.1 Support for reuse

There is a preference for in-built
or self-embedded use software
but no support for reusability.

Reuse of domain-specific
software components built-
in the UE system will be
considered.

There is moderate impact on
meeting the schedule for code
updates.

O.2: Staff skills

O2.1 Range of training

The UE project requires
expertise in process
engineering, electrical
engineering, astrophysics,
mechanical engineering and
software engineering.

Other staff could be transferred
to the UE project as needed.

There is a large impact.

O2.2 Access to hardware platform engineers

Engineers from the supplier of
the hardware platform are
available.

These engineers can act as
consultants through our UE
project.

There is a large impact on
receiving regulatory agency
certification of the operating
system.

O2.3 Software design and
training

Half of the team has skills in
structured design. For new
algorithms, control panel and
centralized data system, the
staff must be trained.

It is feasible to mentor junior-
level staff. Training engineers in
these techniques is possible.

There is a low impact on
meeting the schedule. However,
there is a high cost to training
all users of the system.

O2.4 Multi-process systems

One fourth of the team is
competent in these skills.

Training can be supplemented
with software abstraction.

There is a large impact on all
design choices.

32

Table 5. Organizational factors influencing the UE system.

2.1.4. Analyze Evolutionary Factors:

The Building Blocks for the Conceptual View

UE Evolutionary Factors

Evolutionary Factor Flexibility and Changeability Impact

E1: Software upgradability
(system scalability)

Moderately flexible in Space if

not too far; Highly flexible on

Earth; highly flexible when

PTVD-SHAM microchip is

installed onboard or nearby

orbiting satellites (see § 2.1) for

upgrades; Automatically flexible

in space based on the ABL

characteristics

Main impact on hardware

managers and controllers.

E2: Hardware upgradability None in Space; Highly flexible

on Earth.
There is a large impact on all
components during
development before Launch.
N/A in space.

Table 6. Evolutionary factors influencing the UE system.

Only software-oriented upgradability is plausible for the travelling UE. Upgradability on the hardware-

software, both, is plausible on Earth according to Figs. 1-3 engineering notations in use.

2.1.5. Develop Strategies:

The Building Blocks for All Views

Changes in Hardware Technology
Changes in the general-purpose and domain-specific hardware are anticipated on a regular basis. The goal

is to reduce the effort and time involved in adapting the product to new hardware.

Influencing Factors

O3: Schedule

O3.1 Time and resources

The UE organization is
committed to dedicating the
time and resources for a
product line.

The business climate could
change.

This could kill the project
before launch.

33

T3.1: Support is needed for uplinks and upgradability in Space as well as the station on Earth.

T3.3: The product must be ported in form of uplinks from Earth for the custom operating system, which

could force a change in software platform.

P1 (Earth and Space): Projects interoperate and must support communication with external systems,

to/from Earth/space. The system must be scalable enough and support simulation and distribution on Earth.

In space, it must be flexible enough or adapt to the harsh conditions specified.

P3.1-3 (Space): The processor speed needs to be balanced against memory size and other factors to meet

the product cost. This also involves signal compensators and other sensory systems with a memory

structure to behave real-time performance relative to UE telemetry updates.

Solution
Encapsulate and separate hardware and software specifications.

Strategy: Encapsulate general-purpose hardware.
Encapsulating the system hardware allows advanced changes to be made to the hardware with little or no

impact on the applications. This is provided by layers for the operating system and communication

mechanisms.

Strategy: Use a naming service.
A distributed computing environment at the station and thus restricted to Space (not to a public network,

and thus, highly local relative to operations performed in Space) via uplink and relaying information to the

UE unit in space, is essential for distributing data over different types of processors. The goal is to be able

to use a multi-core or many-core CPU, each core handling unique instructions (reading and executing) for a

specific task e.g. compressing, acquiring, analyzing, etc. or some other combination. The central concept

underlying the distributed computing environment is naming the service is naming the service relevant to

the process type.

Strategy: Partitioning and address bottlenecks.
Developing the system to handle concurrent processes and/or threads requires delicate care in terms of

balancing against memory size and restrictions. This is strategized in terms of compressing data to make all

instructions available to the cores by a static information just using interpreters within the code structure. In

other words, addressing bottlenecks by executing functions of some subroutine within the source code in

binary, is possible when minimum amount of memory space is allocated with a valuable code combination

(e.g. a translation table of some ASCII sort or TT file) is compared with other possible combinations to

execute an explicit instruction. Therefore, the partitioning of data at any level is possible through

compression and explicit access of this information, allowing more space for the CPU to maneuver and

thus run other tasks, maintaining high performance.

Strategy: Encapsulate device communication.
Encapsulate details of communicating with devices into device-specific managers.

Changes in Software Technology
The software platform consisting of the UE RTOS, communication mechanism and data reconstruction

methods (like image reconstruction based on the compressed binary data from Space) at the station on

Earth, is likely to change when applications are ported or uplinked to the UE system (or even technological

upgrades as new platforms at the station).

Influencing Factors
T3:

 Support is needed for uplinks and upgradability in Space as well as the station on Earth.

 Portability requirements are that the system must operate on different data types based on

compressed binary data, operating systems and processors.

34

Solution
In addition to an operating system, add infrastructure software between the product applications and the

hardware platform. This includes the restricted networking software communication mechanisms between

Space and Earth, and interfaces, data management mechanisms, and a timer interface.

Strategy: Encapsulate operating system and communication mechanisms.
Encapsulate operating system dependencies into an operating system library and IPC library that includes

software timer support.

Strategy: Use reentrant repository for data sharing.
Create reentrant repository that serves as dominant mechanism by which applications shared data no matter

how compressed. We use related manager connections combined with asynchronous replies to data request

as outlined in our execution bottleneck issue Fig. 4 (or see the last strategy made on Changes in Hardware

Technology).

Usability by Target Audience
Projects are designed and implemented by UE engineers according to specifications written by process

engineers. These process engineers also verify that a project design meets these specifications. The UE

project engineering system must be easy to use for these domain experts. In addition, for the Earth station

civil engineers have to meet these requirements as well as UE engineers designing the spacecraft before

launch in terms of withstand radiation, spatial disturbances etc.

Influencing Factors
P.4.1-5 (Space and Earth):

 Projects must be portable to new hardware platforms for the station and the UE system before

launch.

 The system must provide engineering tools for UE engineers to create projects, communicate

results to process engineers, and perform verification easily.

 Projects must be impervious to disaster-related issues on Earth for the station as well as those

encountered in space by the Satellite.

 The UE deployment projects must conform to regulatory efficient requirements for software

quality.

P.1.5 (Space and Earth): The system must be scalable to support diverse project architectures.

P.1.3 and P.1.4: The system must support redundancy and fault-tolerance for projects relative to I/O

frequent detections for the presence of devices onboard the satellite even in case of component failure.

P7.1 and P7.2: The cost to develop the project in terms of hardware must meet the spacecraft budgetary

limit relative to latest technologies. However, software projects for verification, validation and license must

not prohibit vital product pricing.

O2:

 People with a wide range of training are available as needed to support the project.

 The project engineers and UE engineers are not trained in classic software engineering

analysis techniques as well as evolutionary software techniques like agent-based and AI.

Solution
Have domain experts (UE engineers, process engineers, electrical engineers, civil engineers, crises and

destruction engineers, material physics and astrophysicists) set the basic software architecture concept for

UE.

Strategy: Have the architecture designed by domain experts.
The UE, process, and electrical engineers have extensive knowledge of domain specific notations that can

be used to design projects. They are familiar with the variety of configurations these UE systems can

support, and are familiar with their distributed nature. They understand the real-time, fault-tolerant, and

35

regulatory requirements of projects, and have experience building systems that fulfill these requirements.

Destruction engineers and crises analysts shall evaluate the product during the development process as well

as UE encounters in space as one crisis leading to another parallel/relative to any potential crisis occurring

on Earth (e.g. disaster-related issues). All of these project characteristics have a profound impact on the

design of UE.

Strategy: Generate code automatically.
To generate code automatically, is primarily motivated by quality of software issue, but it also makes the

system easier to use. The project designer is an expert in the UE domain, but is not necessarily an expert

software engineer. With automatically generated code, the UE experts can concentrate on the project design

instead of on the software engineering challenges. After launching the UE system, the adaptive codes

onboard the craft could be studied by these experts on Earth for future counter-measurements in Space, thus

providing uplinks or new software (additions) when deemed necessary.

Easy Addition of Features
Application policy rules change over time and are likely to become more complex in the future. The control

panel as the monitoring system on Earth must present different features to the user, depending on the UE

status, the connected UE peers between Space and Earth, and its connected I/O devices. On the other hand,

the monitoring system in space as the operating system, processors and agent-based algorithms must

maintain adaptability no matter how the range of complexity grows relative to space environment. These

changes could occur during both monitoring systems run concurrently.

Influencing Factors
P1.1: There are thousands of customized settings and thousands of application policy rules.

E1: Software must be upgradable under non-real time and real-time circumstances for the UE unit.

Solution
Build applications from loosely coupled software components called entities. They communicate using a

central repository and publish/subscribe protocol that provides immediate change notification. Each

component owns or is responsible for publishing information (e.g., waveforms from space, alarms at the

station) that is available to other components in the system. Other components can subscribe to the

information.

Strategy: Use a central data manager and low-level repository to exchange information onboard

the UE.
Decouple applications by using a central data manager and repository to transfer information among the

different applications. Information is exchanged much like a bulletin board using a translation key for the

compressed binary code combinations, representing information or even instructions. On Earth, however,

readable high-level monitoring system is required for humans but the same low-level information rules

apply between the components at the stations‘ centralized repository system.

Strategy: Separate control panel and onboard monitoring functionality into loosely coupled

components.
Separate control panel functionality as well as the monitoring system onboard the UE, into software

components that represent a logically-related set of application features. The application policy rules place

requirements on the software components (entities) regarding the action, they perform, the information they

need, and information they produce.

Strategy: Use publish/subscribe communication.
Using data registration feature allows software component to ask for notification whenever data item

changes. Software components do not poll. The monitoring systems‘ processing model is event or data-

driven in almost all cases. All binary-based applications, they must dynamically accept and apply updates

36

to information, even while the agent-based system keeps monitoring/observing as a separate entity,

executes preemptive communication protocols onboard the satellite (to avoid e.g. disaster from the external

environment).

Quality Assurance
An embedded system is difficult to debug and test code.

Influencing Factors
O.2.3: The staff members have skills in building the monitoring system using the UE RTOS operating

system for both Space and Earth.

T1.1 and T1.2: The processor speed is likely to change frequently, even during development. The

number of processors may increase during development.

P3.1 (Earth and Space): Provide real-time presentation of the current monitoring state.

P3.2 (Earth and Space): Several processing priority levels are needed to support multiple processing

deadlines.

P7.1 (Earth and Space): Trade of processor speed, memory size and other factors to meet the fixed

product cost.

Solution
Place design constraints on software components to alleviate certain risks and highly-plausible bottleneck

switches as discussed for Fig. 4. Provide support for diagnostics as newcomer data from Space.

Strategy: Do not allow applications to share global memory directly
All readable and compressed information shared among applications should be shared via inter-process

messages or via the data manager. The replies to the data manager requests are asynchronous to prevent

blocking among applications. The 2n-core inclusion assists significantly if the design is disseminated in

form of hypercube parallel processes via a semaphore as a switching mechanism.

Strategy: Create RAM-based error logging.
Creating this, and an execution trace system to support debugging of target platform. The monitoring agent-

based system should take-in significant errors relative to events as a future solution in rewriting exception-

handling parts of the source code before a potential error occurs in the future.

Strategy: Use static memory allocation
The motive is that we need to avoid dynamic bottlenecks and data sorting which may increase algorithmic

complexity (time) and use static or hardcoded solutions. Use static memory allocation to be less susceptible

to memory leaks. The TT file LDC solution and the way fixed data compression ratio for incoming and

outgoing data packets performed is a good strategy in addressing the problem. Additions like signal

compensators and wave optimizers, as a memory solution, further mitigates restrictions on the memory

allocation problem which entail significant external latency communication between Earth and Space.

Strategy: Create tasks at start-up

Create tasks at startup to avoid exception conditions with respect to resource management and task

communication.

High Availability
Insuring high availability of the product is critical to its success.

Influencing Factors
P.4.1: Correct information must be displayed to the user at the station 24/7.

37

Solution
Implement mechanisms to alleviate certain risks (recall Bob‘s worst case scenario from §2.1).

Strategy: Implement watchdog mechanisms.
Implement hardware and software watchdog mechanisms to ensure software is not in an infinite loop

(deadlock).

Strategy: Implement the recovery mechanisms.
Implement recovery mechanisms in the data manager to ensure the integrity of the data in the repository,

even if the station power on Earth was lost during data write operation. This also includes backup systems

onboard the UE in case of power loss, etc. specified throughout §1.2.

High Performance
Meeting the real-time performance requirements is critical to the success of the product.

Influencing Factors
O.2.1: Correct information must be displayed to the user at the station 24/7.

Solution
Use 2n-core processors and real-time operating system to meet the high performance requirements. Prepare

for different processor configurations in the future. Partitioning the system into separate components gives

flexibility in allocating them to different processes. Compressing the system resources with fixed results

(fixed allocation) with a reliable code combination key (fixed as well) to save space and time for the

processor to execute more tasks.

Strategy: Use 2n-core processors.
Use a digital signal processor for signal filtering, use the fastest custom-purpose processor available for

main processing, and waveform drawing, other data type reconstruction to a graphics processor after data

decompression at the station (Earth). The 2n-core inclusion assists significantly if the design is

disseminated in form of hypercube parallel processes via a semaphore as a switching mechanism.

Strategy: Use the UE RTOS operating system.
This real-time operating system, has a strict priority scheduler, supports message sending and receiving,

and has semaphores explained previously. These are typical RTOS system features.

Strategy: Divide logical processing into multiple components.
Divide logical processing into software components, called entities, to meet timing deadlines.

Strategy: Separate steady-state real-time processing from event-driven asynchronous processing.
This separation with critical real-time performance requirements from those with less stringent

requirements.

Strategy: Create a task for each unique processing deadline.
Use rate multichannel monotonic analysis (incoming data from all sensors to the processors) for assigning

software components to tasks based on processing deadlines, and to give higher priority to tasks that run

more frequently or have a shorter deadline.

Strategy: Do not allow entities to make blocking calls.
This is reiterated in terms of addressing bottleneck issues relative to decoupling request from replies into

separate messages.

38

Strategy: Minimize the copying of data.
Analyze the impact of data copying and eliminate it when necessary as a filter solution on the BDB

component. Consider using a shared memory queue for high-volume data when appropriate.

Strategy: Don’t produce data unless it is needed.
This filter solution is necessary as explained in terms of those data that occupy void or unnecessary space

(see, Fig. 1, Step #3). Write high-volume data (e.g., waveforms) to the data repository only if the wave

represents rich data from space (non-empty or void).

More on the Evolution or E1:
Software upgrades must be possible in aim of bypassing managers and controllers, or instructions in case of

errors by an intelligent based system, as well as previously-encountered experiences in space to avoid

mistakes.

Solution
Use software and code agent-based learning algorithms independent of the 2n-core processors, which also

shouldn‘t affect current performance. In most cases, such algorithms bypass managers and controllers by

rewriting parts of a code that execute functions in a traditional fashion, now converted to short execution

paths as a solution to an error or crisis which is about to happen.

Strategy: Produce target-independent code.
Keep the code that implements the UE system independent of the target system platform. Although the

project designer assigns CPU number specifying where each part of the UE functionality executes (like

other hardware components), the resulting code should be independent of the particular CPU type. This

also entails the evolutionary programming features of the growing code based on observing errors detection

and whatever being experienced by the components aboard the satellite. It also learns how to evolve and

anticipate the rerouting strategies on rewriting the previous code independent of the target system platform

which results in bypassing the device managers and controllers of the system as a solution.

2.1.6. Quality Requirements:

Software and Hardware

The following list addresses the UE software/hardware quality requirements, based on software quality

evaluation model ISO/EIC 9126-1 [38] for its components:

QR1. The system must be fault-tolerant, and in case of any hardware or software component failure, it

must continue functioning.

QR2. The system must avoid any data loss even in case of failures (QR1). The system should be able

to trace the last actions and errors performed before system failure.

QR3. The system should be able to recover itself after an unexpected failure or breakdown. When it

runs again it should go back to the same state it was before the failure.

QR4. The system must be able to avoid loss of data and react to failures, potentially using backed-up

data in case of disaster-related issues. We strategized in terms of uploading the station‘s

compressed data to home-orbit secondary satellites, downloading all information to a second

station which could be in any other geographical location on Earth. The signal bandwidth limit

39

is not of significance, since we use the latest LDC algorithm for ultimate compression ratios at

the station, however, on-the spot transmission of data to these satellites depends on the satellite

tracking program (recall step # 5, Fig. 3) for a trustable upload/download to the relative base on

Earth.

QR5. Failed hardware component should also be recoverable or replaceable when needed via software

agents relative to controllers e.g., CPUs as a backup solution.

QR6. The system should adapt to its space environment, the physics in terms of updated/uplinked

telemetry by the either artificial or human operator, using smart and efficient algorithms

QR7. The internal system should also adapt with its newly assigned on-board communication

protocols in aim of controllability and interoperability parallel to any potential internal/external

errors (e.g. sensors, see also Code View on the ABL learning algorithm or §§ 6.1.1 and 6.1.2)

QR8. The system should evolve based on previous mistakes, if they potentially attempt to reiterate,

the agent-based learner (ABL) algorithm must be mature enough to address this potential threat

and avoid similar mistakes in the system‘s log.

QR9. The system should be stable enough to maintain all onboard operations between hardware

components relative to external information updates (either in space or from Earth).

QR10. The system should be tested for all of its components, hardware and software before launch. The

system also must be testable after launch in space via Earth station communication units. (This

includes software upgrades from Earth to the UE system)

QR11. Onboard sensory and processing agents, algorithms, etc. must be able to analyze incoming data

from space or Earth, and any asynchronous communication should be normalized down to 0s

real-time scenarios.

QR12. Before information uplink, concerning manual telemetry updates to the satellite, systems at the

station, should be able to simulate new information (via simulation pad and DBs), based on

analyzing the previously-incoming data from the UE system.

QR13. The system on Earth must be able to run under new hardware resources that allow it to improve

in performance. The UE in space must continue functioning with new software updates.

QR14. The system‘s incoming and outgoing information must be secure enough between Earth and

space. This is strategized in terms of compressed information which is exponentially

impossible to decrypt the message with a decompression/decryption key on Earth, where the

key gets updated on a daily basis. The latter key is dynamic as a superimposed layer to the

static key attached for decompression.

QR15. The system must support and handle concurrent access, giving priority to remote relative to

local request executions, from Earth to Space. This, both involves interoperability and accuracy

sub-characteristics of functionality.

QR16. The executions within the UE system in space must be as efficient as possible and avoid latency

issues when relaying data to Earth. This entails imposed physics latencies as an external data

relay barrier. (We have further strategized in terms of a waveform tuner/accelerator or real-time

compensator as a memory-sensory component onboard the system or PTVD-SHAM [23].)

QR17. No latency issues must be visible at the station when operating and updating the satellite from

Earth.

QR18. The system must be able to access vital data at any time either onboard or from the station on

Earth. This is strategized in form of a centralized data system with relevant communication

units to uplink vital data to the satellite.

QR19. The operators at the station must be confident enough to operate the system remotely based on

their previous trainings. Therefore, the interfaces must comply with the usability attributes such

as learnability, comprehensibility for its operators. This entails operability between functions

available to the user at the control panel as well as other compartments of the station.

QR20. The system must be scalable enough, at least in software products, and be able to run in a multi-

core processing environment, taking advantage of the available resources relative to information

load (addressing bottleneck issues).

QR21. The system must support easy additions of functionalities and enhancements (software

upgrades).

40

QR22. To provide reliability at the station for on-time communication, the system must support

replication on the centralized databases, their partitions, etc. to be able to react properly in the

case of failure of one of the databases, even the one installed onboard the UE satellite.

QR23. The system must display correct information on Earth, 24 hours a day, and 7 days a week

(P.4.1).

QR24. The UE satellite must communicate with Earth (UE station) under harsh conditions in space

(P.1.3, P.4.2), while onboard intercommunications between components monitored, processed

and managed.

QR25. The UE system must startup, self test components before launch, and must be able to reboot

safely in case of major failures in space, it must also be able to conduct the same or even

updated routines by its custom real-time operating system, or UE RTOS. Note that during any

updates, the OS must not alter its real-time performance (fixed deadlines) and its multitasking

assignments. We strategize to use only compressed binary data with a readable static key

onboard the satellite, thus for its newly-assigned tasks as updates on a particular application, this

solution would not overwhelm the system with extra information flow and memory usage.

The abstract version of our quality requirements is listed below and specified (labeled) in the general

scheme of our architectural topology, Fig. 6 , which reflects Figs. 1-3 from §1 of the report.

1- Reliability relative to Availability

1-1- Fault-tolerance (Component Failure)

1-2- Recoverability

1-3- Maturity (ABL-related that avoids failure as a result of faults in the software)

1-4- Reliability Compliance (Confidence)

2- Functionality

2-1- Security

2-2- Interoperability

2-3- Accuracy

3- Maintainability

3-1- Stability

3-2- Testability

3-3- Analyzability (Agents and Algorithms)

3-4- Changeability (Agents and Algorithms)

4- Portability

4-1- Adaptability (ABL-related)

4-2- Installability

4-3- Co-Existence (Memory, Algorithms + Agents)

4-4- Replaceability

5- Efficiency

5-1- Time Behavior

5-2- Resource Utilization (UE‘s Centralized Data System on Earth)

6- Usability

6-1- Learnability

6-2- Comprehensibility

6-3- Operability

41

Quality

Requirement

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

Availability X X X X X X

Reliability X X X X X X X X X X X

Functionality X X X X X X X X X X X

Maintainability X X X X X X X X X X X X X

Portability X X X X X X X X

Efficiency X X X X X X X X X

Usability X X X

Integrity X X X X X X

Scalability X X X X X X X X X X

Table 7. Quality factors influencing UE and its CCS systems.

Fig. 6. The simplified overall topology of Figs. 1-3 with quality requirements labeled in Space and on Earth

2.1.7. Architecture Transformation before an in-Depth View

A High-level representation: A refined transformation stratifying view layers
on our design choice relevant to quality requirements via strategies

A High-level Representation of the UE Satellite Software Design:

The simplified classification of the concrete version of all software architecture views are give as

following with notice to the merits of Fig. AT1:

UE Data View:

The top most level of the application is the operator/user interface view incoming info from UE in space.

The main function of the interface is to translate tasks and results to something the operator/user can

understand.

42

UE Data Update:

This level coordinates with the application, processes commands, make logical decisions and evaluations,

perform calculations and communicate with different devices attached. It also moves and process data

between the two surrounding levels of view and updates, in space and one Earth.

Fig. AT1. An initial high-level configuration of IS2000

UE Data Storage:

Here, the gathered information by the satellite is stored and retrieved from the database. The information is

been transferred according to the requests made from within the system or across the satellite network.

Refining the Conceptual Relative to Other Views as a High-level Design

Representation

The following figure is a refinement of the decomposition of our views mainly Conceptual relative to the

performance related issues as well as strategies pertinent to the remaining software quality sub-

characteristics:

Fig. AT2. This figure represents an Architecture Transformation upwards to a concrete high-level design on software

application and its relative components at the station on Earth. Data is accessed by the operator, thereby uplinked as a

43

simulated new coordinates to avoid crisis on the satellite unit, as well as a software update on any hardware-software

control based on the partitioned database: DBs, here, are in fact partitions. The partitions represent each manager on

Earth.

Fault Potential Problem on the Early Evaluation, Rectified

A potential storage problem would have sustained initially, if we would have considered an ordinary DB

storage technique on data. This resulted in our choice to compress data and thus manage space and allocate

process time between components.

Fig. AT3. In this figure, the main database component is a binary database (BDB) and supplies all UE data managers

onboard the UE, the information needed via a data translation key index combinations for its compressed version.

After accessing this data representing, virtually, the massive amount of information, obviously, system components are

managed by the application for specific tasks.

On the multiprocessors problem, that flaw potential is too contemplated in the first place, Fig. 4, §1.2.2,

using the software bottleneck partitioning and semaphores at the data application updates recognizable in

Fig. AT.1, As we recall in that section, this evaluation part of our architecture was submitted as a solution

to our Execution View addressing bottleneck against usual architectural techniques used in the software

application layer (recall Fig. 4). The time-length reduction or decrease against any potential time-length

extension or increase, has been technically discussed and refined in our Execution View. Of course, this

relationship between the BDB component and processors is significant on all views when Space Data is

packetized and sent to Earth for view and real-time updates. This conversely is the same when Erath

updates space data by sending new coordinates or instructions to command the satellite under critical

conditions (e.g. Bob‘s scenario, §2.1).

Of course, further strategies expressing our data managers are already presented in our Module View in the

decomposition of the platform software, §4.1.1.

The Refined Transformation Steps:

44

1. Satellite Data Updates and performance

In order to achieve the performance requirement (QR.6 and 9) the vital data operating the satellite (current

and future code updates) that are not stored on the local server are requested to the Index Server that sends

the request to the server at the station, where the UE updated data is stored, so this one sends the data by

packages sorted by a given criteria and the complete code is stored in the requesting server where the

changes (if possible by permissions) are stored onboard the satellite in a compressed form. This

characteristic permits to access the satellite within the least time-delay possible from the control panel at

the station that is updating it or consulting it. The detailed way of the information is sent between UE and

Earth station and obeys a given criteria, so the UE data that is received and can be shown while the rest of

the information is sent and stored. To achieve maximum performance the component identifies the read and

update requests. All the read requests are handed over to Index Request Handler which is closer to our

Database component; this results in easy and quick handling of request and usage of less system resources,

especially on the satellite as compressed data. The Component of Update Manager as well as Database

Manager, both have these roles on repository index updates and information access. The communication is

in form of data packets as purely compressed data to the satellite and form the satellite instituted by the

Communication Managers in Figs. AT2 and AT3. The index update is explicitly relevant with controller

components shown later in the Decomposition of the DB managers, Figs. CnV6 and CnV7.

i. Device communication

The communication between the UE system and different devices is handled and encapsulated by the Data

Control Unit component. The device control unit checks the availability and platform of communication for

the devices to communicate directly to the System or system(s) between Earth and space. Data is

compensated and manipulated when necessary in terms of compressed data during communication between

the satellite and the base on Earth. The compression is explicit in terms of integrity and thus no data loss at

the decompression phase on Erath for its viewer/operator. Compression is essential for efficient

communication relative to data compensators which depend on the absolute physics restricting real-time

communication from/to space (subject of Execution View). Without considering this technological factor,

delay of data communication is inevitable. This Control Unit component sends the respective commands to

the specific device, fetches the results sent by it and sends back to the Update Manager in a form of Data

for its further processing, when ever acquired by the satellite in space. This manager is part of the I/O

management system on UE as illustrated in Fig. AT2. This is also applicable on Earth when the control

panel operator acquires data from Space for further processing via a similar approach, (Fig. AT3)

delivering results as decompressed data. As stated before, the controller component is abstracted with Ctrl

in the later figures of our Conceptual View (the conceptual configuration figures).

ii. Recovering after failure

In order to provide recover mechanisms for the system after failures, a special process for tracking the

system transactions, log every activity and to register the proper turning off of the system or in future cases,

when system learns, directly fix it while error is occurred or system failure. In case of an unexpected shut-

down, when the system starts again it will run the start-up process to check the compressed data

representing specific error codes or type in order to detect if there was a proper shut-down of it was

unexpected. In case of detecting an unexpected shut-down the system will run a recovery process

responsible to track all the actions previous to the failure that have been registered in the logs file. After

recognizing the actions that were not executed because of the failure had been recognized, the system will

book them to re-start again. The compressed database engine will protect the system from the negative

effects of interrupted transactions by its Error and Recovery Manager (Fig. AT3). The system will also give

a notification to the operator at the control panel on Earth that start session after having interrupted

45

transactions or system failure to notify them the last transaction performed, so ensure the UE system has

restarted at the last saving point otherwise, all restarting procedures must take place by up-linking the

necessary codes and instructions from Earth to the satellite (Addressed in our Code View). All this is

possible because of the system log process running constantly to trace all the transactions performed. This

is shown in the ―Logger‖ code view process in §6.1.2.

iii. Data Safety

To provide safety to the stored data in the database at the station, a local backup database has been

designated to work as a mirror of the primary DB in form of a separate partition or even server elsewhere

(formerly designed in our Topology, Fig. 3) which is handled by the database server. This partitioned

database allows communication and data control to act efficiently and address bottleneck issues resulted

from the load of incoming data from the UE in form packets of bits as they accumulate during real-time

access. In case of the failure of the primary database the mirror database will be available to support the

system operations. In that case a general backup to the main server will start and a warning will be given to

the administrator or operator who will decide in what conditions the system will continue. If any of the

primary or secondary database partitions fails, the backup will be made on remote location before shifting

to available functioning database (UE backup station from Fig. 3 adapted to a recovery manager criterion

during operations in Fig. AT3). Two types of backups are made one locally managed by secondary

database and other is done remotely. Local backup is made according to each update made on database and

remote backup twice or thrice a week according to UE station policies.

iv. Security

The secure access to the system is handled by the authentication/authorization unit component, and this

functionality is mapped to the UserAccessLevelProcessing module in the security layer and the overriding

or Bypass Manager (in case of critical) in the process running at the local server.

2. Data Manager

Data manager will manage the following things as mentioned below based on Figs. AT2 and AT3.

a. Interface (at the control panel on Earth)

This is the Operator‘s Interface with all the different controls which the user sees and uses to access

functionality of the system.

b. Validation (in Space and on Earth)

This is used to perform some satellite side validation of telemetry data updates and addressing crisis

management issues in space (Recall Bob‘s scenario from §2.1) like checking the format of correct data on

real-time or delayed time, sending off the correct coordinates, software updates or checking of the required

backup systems or an ongoing functional hardware during software operations.

c. Attachment Unit

It‘s a specialized interface for easy and quick viewing and attaching different copies of historical records or

even code updates including different ongoing machine tests result.

d. Process Unit

Process unit is used to handle the movement of data across different units. The data refining and their

transfer is been handled by this unit.

46

3. Output Controller

It is responsible for displaying operator‘s requested information at the station on Earth. All ongoing updates

are managed and notified to operators in case if any other operator/user is accessing old information.

Aboard the UE, this is managed by bypass and communication managers sending information to Earth as

well as instruction access and updates by the main processors for controlling the satellite.

5. Update Manager

The following things are managed under Update manager as given below.

a. Lossless Data Compression Controller

This component manipulates the data into smaller volumes by using state of the art encryption algorithms

(specifically with fixed ratios to make data management quite efficient) and other techniques to guarantee

the losslessness of data between Space and Earth. This falls in the DB manager‘s area of operations on the

low-level repository: subject of the strategy ―Use a central data manager and low-level repository to

exchange information onboard the UE,‖ from easy addition of features.

b. Authentication/Authorization Unit

This component is used to make sure that the operator on Earth accessing the system has authorized rights

to access general and specific information according to their user rights and hierarchy with overriding

security features (from Bob‘s scenario, §2.1).

c. UE I/O Data Management Unit

It‘s used to manage information movement between different components and controls the fellow of data

between different devices within the UE system.

d. Compressed and Decompressed UE Content Manager

This Content Manager identifies the type of action to be performed on the data and pass it to their

respective components for processing. And finally update it into the UE system.

e. Update Manager

This component is used to handle all activities related to modification or retrieval of data from the system

and pass the information back to Compression and Decompression UE Content Manager.

f. History/log Manager

It keeps the log of all the activities undergoing in the system.

g. Satellite Data Sharing

All operations related to satellite movement from one space coordinates to another or any updates onboard

the satellite are performed by this component which depend on the compressed DB component translations

(data interpretation by Software Code in program source aboard).

2. Device Control Unit

Device Control Unit makes it logically possible to communicate between different devices connected with

the UE system, and it manages the flow of Data between system and device.

47

3. Storage Management

Data Access Logic

This component handle the functionally for accessing the data in the database like how to add, delete,

update information in the data in compressed manner just relying on shortest bit combinations rather than

high-level data onboard the UE. High level information is essential on Earth when manual inputs by the

user are concerned.

Data Optimizer and/or Compensator

Data Optimizer and/or Compensator are used to achieve maximum efficiency related to data compression

management, storage capacity, transmission time etc. during updates and instructions. This involves Bypass

Managers both in Space and on Earth to bypass other mangers and controllers when necessary, satisfying

shortest execution path (route) possible to either send or receive data.

Information Unit

Its task is to evaluate the type of update and notify accordingly. This can be a physical data update or just a

simple update notification.

Storage Units

Both on Earth and Satellite, it is responsible for all kinds of activities which are performed on the

compressed database, and thus to make sure the data has been modified when deemed necessary through

program instructions (performed by processors mainly detailed in Execution and Code Architecture views).

Software Update management

Onboard the UE, the software update manager uses the BDB component to allow necessary updates occur,

to assign tasks to the evolved entity (ABL) component managing errors as well as direct management of

hardware components. The evolved entity is introduced in our Conceptual View and further specified on its

roles and evolutionary characteristics in Code View which address the evolutionary E1 strategy of the

system.

Bypass managers and controllers management

Onboard the UE, the Bypass Manager uses the BDB component to allow a bypass of certain controllers to

issue high performance strategy as well as data recurrence or redundancy: Produce target-independent code

from evolutionary factor E1. Furthermore, bypassing controllers when identical data is processed or satellite

reappearing in the same space coordinates, or any other issue increasing time delay such as recovery

mechanisms, this bypass compensation factor is essential. This is later considered in Figs. CnV4 and V5 in

our conceptual view as green-zone controllers in the view‘s configuration, which addresses the two strategies:

Implement watchdog mechanisms and Implement the recovery mechanisms from High Availability, as well as

performance-related strategies in our software quality sub-characteristics.

Data Compression Manager

It insures that the compressed data represents the right instruction codes on managing hardware

components as well as software updates.

4. Index Communicator

All remote update and notifications are managed by this component and the decomposition of it presented

in the Conceptual View as Figs. CnV6 and V7, in §3.

48

Summary of transformation

The results of the evaluation are shown in the Architecture description before the views (§§1 and 2)

defining our choice of design. Since the new design choices were made from those points inclusive of an

early evaluation which was not fully given by the peer-reviewing group, the initial strategy was to consider

all necessities of the design in the first place before any transformation. Furthermore, the evaluation led to a

second evaluation as the results of the first evaluation in terms of the Code View based on the evolved

entities introduced in the conceptual.

We remain to emphasize on the self-evaluation of the architecture both in Space and on Earth on the

conceptual, since after defining our entities, the applicability would be already defined in the Code

Architecture view (§6.1.3) and its early core evaluation (Section 1.2.2) on the remaining architectures

indeed. The latter emphasis is mainly on what we have evaluated for our software solution addressing

bottlenecks (Execution Viewpoint and software resource management) which involved the asynchronous

parallel processing solution (§1.2.2 or Fig. 4) and compressed binary database components for our data

mangers (this was considered initially).

All of which we have already incorporated in our Conceptual as well as Execution and Module views

both on the Earth and in space data managers i.e. for a successful data transmission and its subsequent

management: points of data analysis from a human operating at the control panel to the machine levels as

the central data on Earth (elicited form the early sections of the report topologies) and satellite in space,

process, control and delivery.

The following is the configuration and decomposition of the main system on all views relevant to the

current software architecture and quality topic.

3. Conceptual Architecture View

3.1.1. Components for Software Specification:

Function Blocks, Connectors and Categorization

Category Examples of Function Blocks

Arithmetic operations on analog signals add, sqrt, abs

Analog signal processing Unit delay, differentiation, integrator, controller,
digital filter

Selection of analog signals Switches, min/max value selection, sorting

Mixed analog/binary signal processing Limit switch

Logical operations and, or, xor, not

Binary/fuzzy binary/quantum signal processing Internal/onboard circuitry: Unit delay, pulse
with specified duration, on and off delay, flip-
flops
External/UE to Earth: Space-time delay, pulse
with specified duration, pulse
bender/accelerator/superposer or time-data
entanglement via PTVD-SHAM memory

Selection of binary/fuzzy binary/quantum
signals

Switches, n-out-of-2n/four-out-of-four/three-
out-of-four/two-out-of-four/one-out-of- two
states voting (the n out-of-2n is unique to the
many-core hypercube processors parallel to

49

PTVD-SHAM component: select incoming signals
from Earth, boost or accelerate outgoing signals
to Earth)

Domain-specific actuator interfaces Interfaces to control pneumonic components for
navigation, depressurization, heating elements,
blower, wing system, CNT physical properties,
extinguisher, and shield

Interface to the runtime environment onboard Acquire operation-mode permission, pass error
flags against AWK signals (see, Code View)

Interpret compressed fuzzy binary signals into
binary signals onboard

Acquire instruction mode between hardware
components and CPUs by a fixed combination of
binaries from the C(DB) component, which has a
fixed TTable satisfying these combinations.

Interface to the runtime message dispatch Send finalized processed signals to Earth as an
external approach via e.g., the PTVD-SHAM
component

Relay dispatched message to Earth Acquire passive mode message from UE, relay to
station via, e.g., home-orbit satellite

Decode compressed message signals into binary
signals on Earth

One for each message block module that
generates a message signal after decompression
via its database equipped with the TT key at the
Earth station.

Table 8. Categorization of Function Blocks onboard relative to station on Earth

In some scenarios, we have abstracted the function blocks (FBs) for our conceptual view to satisfy a

comprehensive conceptual scenario and configuration. For instance, the miscellaneous physics, which is to

do with all physical components (hardware) onboard the satellite including the shield system, sensory

systems, change of CNT physical characteristics, etc., includes such function blocks like the actuating

interfaces example from Table 8, controlled by software instructions passed from one main CPU

component to another, in concept. We have encapsulated the very details of the detailed information

transacted between components (communication) via entities, some as agents relative to non-agents. The

software component as a device manager presenting an abstraction of a UE device, applies the strategy of

encapsulated device communication, from § 2.1.5.

In continue, we shall experience asynchronous communications, which is due to using connectors for

indirect communication between entities addressing high performance issues onboard the UE. However,

the FBs are specialized for direct communication at the CPU level satisfying near 0s time scenarios.

Therefore, in our conceptual view, we have these FBs, each used as a source (S) and destination (D),

connecting FB_ports to FB_roles, where asynchronous communication takes place, and in parallel, all of

the time cycles are normalized. These roles are classed for either incoming raw data or outgoing data

onboard the UE.

At the execution level, the choice of connectors from the conceptual reflect in the connected ports to

roles, when communications occur at the CPU level/memory, which should fulfill real-time scenarios,

already rationalized back in § 1.2.2 during our system evaluation.

We further refer to these examples in aim of proper terminology and notational use, as well as relevant

examples in our other views.

50

3.1.2. Sender/receiver Processing Scenarios and Conceptual Configuration

Processing Scenario, Meta-Model, UEDOMessage Protocol and Configuration

The scenario in Fig. CnV1, uses a UML Collaboration Diagram (see Chap. 9.2, Hofmeiester [1]), to show

how raw data from space is acquired, processed, and displayed on the Control Panel screen on Earth (the

main station or base). Before displaying information to the user at the control panel, the UE system device

managers and controllers, onboard the UE, decide real-time what to do for critical and regular situations. It

is either receiving interruption request signals (IRQ) from hardware components, and thereby

acknowledgement signals (AWK) to components via the main CPU, otherwise, compensate/recover

through backup or take care of a particular situation in terms of avoiding dangerous or critical scenarios in

space. The waveform data (wvf) under any of these conditions shall be relayed to Earth, i.e., control panel,

and further analyzed, processed and ergo decided upon for upgrades and human-based decision

plans/executions.

Although these scenarios do not give the complete picture of conceptual view, they do show the peer-

to-peer communication that is missing in the module view.

Fig. CnV1. Receiver/producer/compensator/accelerator and relay processing scenario from Space-to-Earth

The software components in the scenarios are a particular type of component called a software entity.

In the conceptual view, the entity concept is the result of applying the following two strategies:

51

1. Separate monitoring system functionality into loosely coupled components (issue Easy Addition

of Features)

2. Divide logical processing into multiple components (issue High Performance)

A software entity produces data that is used by other entities. Thus, it is possible to describe the

conceptual view of the UE system using software entities a s the lowest level components. Fig. CnV1,

shows that an entity communicates with other entities through its ports via messages (a UE global data

object or [UEDOMessage]). Some of the message types for the monitoring entities are the raw data coming-

in from the devices, waveform samples, parameter values, and signal state status (in case of Earth, at the

control panel is the alarm status) to vote from a fuzzy state, binary, etc. relative to a particular UE hardware

component . Each message type is produced by only one entity, but many entities can consume it. Entities

are decoupled in the sense that producers don‘t know which entities consume its data and consumers don‘t

know which entity produces the data.

The meta-model in Fig. CnV2, is a restricted version of the conceptual view meta-model presented in

Fig. 4.16 of Hofmeiester [1]. The most important simplification is that UE has only one level of

decomposition; neither the components (Entities) nor the connectors (UEDOConnector) can be

decomposed. A UEDOConnector has exactly two roles – a producer and consumer – and this can only be

connected to output ports and input ports, respectively. Because the UEDOConnector cannot be

decomposed, the protocol, (UDOMessage) is associated with the connector instead of with its roles. And

lastly, because an entity cannot be decomposed, there is no need for bindings between ports.

The conceptual view can also explicitly describe abstract connections between entities by describing

the protocol associated with a UEDOConnector. It contains information about the characteristics of the

data and events flowing between the entities, including their type, direction, size, and rate. The strategy Use

published/subscribed communication (issue Easy Addition of Features) applies to this protocol.

Fig. CnV2. Meta-model for UE entities. ESource = Source on Earth, UEDest = UE destination in Space, UESource =

UE Source in Space, EDest = destination on Earth.

52

Fig. CnV3. UEDOMessage protocol on the normal Entity adjacent to an ―Evolved Entity‖, where the latter is

exemplified in terms of an agent-based learning (ABL) algorithm in our Code View, which updates communication,

state control, or even upgrades system applications‘ code based on previous UE experiences in space

The protocols adhered to by entities communicating via the UEDOConnector is shown in Fig. CnV3.

On the left image, the information exchanged between entities via the UEDOConnector is represented as

UEDO. Entities first register for the data of interest. When published, data is written, it is disseminated to

all entities subscribed to it. An entity can also explicitly read data rather than wait to be notified of an

update. This could be recognized on the right image which is observing data (or read) then disseminating

data in the code‘s body for future communicational usage. This is an Evolved Entity that could update the

level of communication between other entities when necessary. Therefore, in its future calls, it uses the

updated UEDO and disseminated it to all entities subscribed to the current data, which is by now updated

via this entity (the evolved type). A good example is an agent-based learning (ABL) algorithm which is

later discussed in our Code Architecture view.

There is a special kind of entity called an agent like the last example, which acts like an intermediary

between other (non-agent) entities and device managers. A device manager is a software component that

interacts directly with hardware device, and presents to agents an abstraction of this device. The device

managers are the result of applying the strategy Encapsulate device communication (issue Changes in

Hardware).

Fig. CnV4, shows a portion of the conceptual configuration for UE both in space and on Earth (the

ones on Earth are colored in yellow). This configuration corresponds to the scenario depicted in Fig. CnV1,

but here the input and the output device managers are also shown. There are four types of

UEDOConnectors in this configuration: WUEDO, PUEDO, SUEDO and AUEDO. These connectors

handle the communication between entities and convey waveforms, parameter, state signal onboard the UE,

bypass opportunity in case of identical incoming waveforms to their past, and alarm data at the station.

Connectors of type UESM and CPDM handle the communication between the system device managers on

UE with respect to device managers by the control panel. There is a special OptimzedWvF connector as

[filtered + fragmentedWvF] (of partitioned type) for the high-speed data transfer used to deliver the

waveforms relatively real-time to Earth. The bypass opportunity (the green zone conditional connector

bypassing device managers between the acquisition and relay) is conditional to an agent-based learning

algorithm which addresses issues related to high-performance on selectable incoming waves for short path

communications (later elaborated in § 5.1.2 of our execution view).

53

Fig. CnV4. Conceptual Configuration of the UE system between Space and Earth

54

Fig. CnV5. Conceptual Configuration of the UE system from Earth to UE in Space

Fig. CnV6. Decomposition of the DB managers with lossless data compression technology in Space

55

Fig. CnV7. Decomposition of the DB managers with lossless data decompression technology on Earth

In the last three figures, other UEDOConnectors are abstracted as Ctrl which is control and Data which

is data, outlining where and to what extent functions apply between output ports and input ports as send (S)

or receive (R) information, source (S) and destination (D) between entities specified back in § 3.1.1. SUDO

in these figures, is the state of user data between entities. Fig. CnV5, shows the uplink process to UE in

space from the station on Earth. The specifics of the connectors connecting one entity to another from the

upper portion of the figure, sending information from base (station) to the lower-right of the figure (UE in

Space), is recognizable in concept. The demarcated green zone over the three Ctrl‘s in the figure, are

focused for controlling specific (one out of three) or a collection of hardware components (all three,

dependably) by the processor based on the newly-arrived instructions from Earth. It could be a software

update, or it could be a system-override problem like Bob‘s scenario to change course of the UE unit in

Space to a safer zone, etc. (recall §2.1). The lower left portion of the same figure, in its the communications

are formed between device managers and entities handling information updates (usually of evolved type)

which could update their user for a worst-case scenario or even normal-cases through simulation, etc. as

lately received from the satellite. This also involves entities that handle the overriding protocols in terms of

registering reiterative values known to the system variables (or those security codes located at the

centralized data system). Figs. CnV6 and V7, respectively represent the UE DB management

decomposition in Space and on Earth. The main focus is either using compressed information for the UE

system components at the software layer, or decompressed information at the station for humans or control

panel user(s).

At the binary level, once data being compressed, the system does not have to know about the actual

information and merely a representation of the binary code combination shall suffice using a readable key

to the program. In other words, in concept an accessible translation key by the entity is enough to access

relative compressed information to interpret rather than decipher the instructions onboard or even at the

station. It is the other version that matters to a human cognitive sense when interpreting information at the

control panel where data is graphically reconstructed (using e.g., decompression technique based on the

pixel integer key, earlier given in § 2.1.1 discussion points) in Fig. CnV7. This, of course, involves the

usability software quality characteristic in our architecture.

4. Module Architecture View

The standardized interpretation of pipes-and-filters architectural style is to address workable scenarios from

our conceptual view in our architecture e.g., acquire, analyze, compress and decompress in a sequence, are

deemed as filters (processing steps) for the UE, and are connected by pipes (channels) in a sequence to

56

output the expected product for the system. This leads to executable scenarios relative to conceptual and

modular once revisited in the later sections of the report. Therefore, to satisfy such executable scenarios by

hardware and software separate threads/co-routines in our system, we first must have an overview of the

system from a module perspective.

In the module view, UE software is divided into application software and platform software. The

application software of the UE system is organized into the following subsystems:

 SignalAcquisition is responsible for acquiring and preprocessing physics data from the Space

environment.

 SignalAnalysis is responsible for deriving the parameters values and detecting Spatial conditions

relative to the UE unit, as well as being of temperature type, pressure, etc. onboard and outside the

unit.

 DataCompress is responsible for delivering compressed data to the system for further analysis

when the processors need to derive specific logic states either to relay them to/from Earth

otherwise, control or execute specific instructions on hardware components.

 StateSignalProcessing is responsible for pinpointing the logic state values and categorizing for

specific component control after compression, which leads to communication.

 Communication is responsible for onboard communication signals or network in terms of

runnable systems (miscellaneous physics), backup etc. inclusive of normal routines between

processor and other components onboard. In parallel, UE communicates with other units located at

the central station on Earth.

 At the station, the control panel is responsible for serving as the link between the user and the

underlying functionality of the unit. It is responsible for the visual and audio presentation of

information to the user. This could also be presented in form of a GUI or simulation pad in case of

UE crises in Space.

 User application at the station is responsible for the high-level logic that implements the user

requirements.

 SatateControl is responsible for coordinating major state transmissions such as startup, shutdown,

standby and transfer both on Earth and Space.

 SystemApplications is responsible for power-supply management, diagnostic management, log

management, and system resource utilization management both in Space and on Earth.

The UserApplications at the station, and the SystemApplication subsystems for both Space and Earth,

decompose into device manager modules and entity modules. These are abstract modules that implement

the device managers and entities in the conceptual view.

For example, there are entity modules in the module view for functionality such as data acquisition,

compression, decompression and alarm detection on Earth, with simulation support, relative to space

acquisition and compression functionalities in Space. Fig. MdV2, shows how entity modules are contained

in UE‘s subsystems, upper image represents those onboard the satellite, and the lower image represents

those at the station. These are some of the entity modules needed for the conceptual configuration of Figs.

CnV4 and CnV5.

We did not require to include the ‗decompress‘ module in our application software onboard the UE.

The reason, as pointed out in § 1 (Fig. 3, Step description iii), is having an ASCII-based translation table

(TT) algorithmic component as a static key for all compressed data, either being received from

Earth/Space, or being sent to Earth, the UE system applications interpret compressed data via the static key

which never changes during information update and application upgrades, as usable information onboard

the satellite when necessary. Good examples from the usage point of the compression layer onboard the

57

UE, are further inducted in our Code View, §6 (see explanations on Fig.CV1 and the answer to Q.3 from

the Code View evaluation, §6.1.3).

Fig. MdV1. UE subsystems in the application software

Fig. MdV2. UE subsystems in the application software at the station on Earth

58

An EntityModule is decomposed into an EntityControl, EntityData, and multiple EntityFunctions– one

for each UEDO to which it subscribes (Fig. MdV3). It has an interface for each of the UEDO‘s it publishes

or to which it subscribes. When an entity receives an UEDO, the EntityControl initiates the corresponding

EntityFunctions for processing the UEDO. When publishing an UEDO, the EntityFunction returns control

to the EntityControl. EntityFunctions share a common EntityDataSpace. Services provided by the platform

software handle the publication and subscription requests, so that entity modules do not interact directly

with each other.

Fig. MdV3. Meta-model for Entity module structure

4.1.1. Decomposition of the Platform Software

Data managers

The platform software provides services for communication between entities, communication with devices,

and other general system services. Its design is the result of applying the following three strategies:

1. Use reentrant repository for data sharing (issue Easy Addition of Features).

2. Use central data manager and repository to exchange information (issue Easy Addition of

Features).

3. Encapsulate the operating system and communication mechanisms (issue Changes in Software

Technology).

The platform software contains the following subsystems:

 DataManagement provides an interface for entity modules to publish and subscribe to data.

Entity modules share information via UEDO‘s provided by this subsystem. It is responsible for

managing the centralized repository in which the UEDO‘s reside and for providing services, for

data publishing and registration, data compression, distribution, and access to local and remote

data between Earth and Space systems (internal/external).

 DeviceManagement, defines a standard interfacing to product-line devices. The standard is

based on Assembly to enhance portability. It is responsible for providing a stable, standardized

device environment for the rest of the system. It protects the software from the hardware details,

allowing applications and other subsystems to be ported to other hardware environments.

59

 SystemServices, provides an interface to the UE host platform. System services include

compressed file handling, inter-process communication (IPC), logging interfaces, operating

system support, system resource protection and time services. The additional system services on

Earth would be to include system console interface at the control panel as well.

Fig. MdV4. Data manager

Entity modules access UEDO‘s through the DataManagement subsystem of the platform software. Instead

of peer-to-peer communication between entities in the conceptual view, the Entity modules communicate

via data manager in the DataManagement subsystem. The decomposition of the data manager shown in Fig.

MdV4. The data repository is encapsulated in UEDOData module. The UEDOControl module provides the

data manager functionality and access via an interface that adheres to the UEDOMessage protocol defined

in Fig. CnV3.

The strategy, Do not allow applications to share global memory directly (issue Quality Assurance)

applies here. The strategy, Do not allow entities to make blocking calls (issue High Performance) also

applies here. In-line reads of data are not allowed unless an entity is the owner of the data. When an entity

issues a data read or registration request to the data manager, the data request reply comes back to the entity

in a separate message. This allows applications to be written without knowing whether data is coming from

a local data repository, from a repository on a different processor, or from across the UE communication

peers.

Having this additional infrastructure in the platform software meant that all software engineers were

trained and could communicate using a common framework. For example, more than 95% of inter-entity

communication uses common data distribution techniques and common event notification techniques

implemented by the data manager [1]. Because there is only one way for entities to communicate, it is easy

to explain and understand. This additional infrastructure eliminated reentry issues for entity modules due to

global data being not shared between entities.

The platform software design ensures that moving to a faster processor affects the software only at

lowest level of interface with the host platform. The software design makes it relatively easy to distribute

the application software onto multiple processors.

4.1.2. Layering Structure

Software -Hardware Layers

60

The layering structure is used to implement the global analysis strategies for providing abstract interfaces

and isolating dependencies. This structure, shown in MdV5, is orthogonal to the subsystem decomposition

just described. Although all the modules in the platform software are assigned to the Platform layer,

modules in the application software are spread over multiple layers. The module layering had part in

motivating our UE model construction based on similar approach made in client-server models, since signal

from space is in fact client.

Within the Applications layer, entity modules are further separated into policy makers and procedural

application, to separate the functionality for product-specific requirements from more generic algorithms

that are used across the product line.

 The subsystems for applications software in UE fit into the layering structure in the following way.

Fig. MdV5. Layering structure in UE

Entity and agent modules are located in the Applications layer. Device manager modules are located in the

InputSensoryManagers layer.

The SignalAcquisition subsystem is the interface to the hardware devices that monitor the events of the

internal/external UE system (see Fig. 6 right image, specifying the internal and external systems). It

consists of device manager and agent modules that convert the incoming signals into UEDO‘s. The device

manager modules are located in the InputSensoryManagers layer, and the agent modules are located in the

Applications layer.

The SignalAnalysis subsystem is in the Applications layer. It contains two kinds of modules:

procedural application and a policy maker. The procedure application analyzes the acquired signals. They

contain generic algorithm used in product family that were developed independently from and prior to UE.

An entity wrapper around each algorithm ensures that the resulting code follows the architecture model.

The policy maker entity synthesizes the information from the algorithms in form of compressed

information using a key which the latter subsystem (DataCompression) is too located in the applications

layer, thereby reports it to the modules in the StateControl subsystem (at the station on Earth would be

UserAppllications subsystem).

61

The StateControl subsystem, which is also in the Applications layer, is the chief policy maker. It

provides top-level coordination for the operational states of the UE system (e.g., monitoring, standby and

shutdown of parts or even the whole system)

The written or even ported code as an update to the UE system in space, was partitioned into device

manager and agent modules to follows the architecture model.

4.1.3. Error Logging

The Building Blocks to Evolutionary Agent-Based Programming

Because error logging at a binary level is used throughout the system, it is important to minimize the impact

of any changes to code design by creating a separate error logger module and guidelines for its use.

The error logger allows callers to log an entry containing the filename and line number were the error

was detected. As many as nine 4-byte integers of information, including an error code, a severity level, the

time of error, and a trace of addresses and arguments of the call can be logged, and provided to more

intelligent or evolving algorithms. This gives the context for self-debugging and fits within the resource

constraints of the embedded systems, in accordance with the strategy create RAM-based error logging

(issue Quality Assurance).

One of the usage guidelines is that, services do not produce fatal errors if an input argument is invalid.

Instead, the service passes an error back to the caller and the caller must take appropriate action (exception

handling). An error log can be examined locally via the trained algorithm (evolved) over the

communication lines onboard and even could be examined from Earth at the station. The error logging

could also represent fatal hardware failure which switches to the backup system, and the system call

complies with new assigned policies made by the intelligent algorithm for future potential encounters, in

space or aboard the satellite (internal components).

5. Execution Architecture View
From an execution viewpoint, we have considered the usage of compression techniques to our I/O

information between the DB system and processors. By considering equipartitioned data/fragments,
9
 as

equal-sized chunks, feeding it to the FBAR LDC algorithm with its static key (always static in size),

generates spatial fixed ratios as well as execution. This means, the temporal property is predictable under

almost all circumstances between central processors and storage.

The strategy is to preemptively plan for static memory (space) access of specific data, before the

evaluation process of the architecture, resulting reliably-internal executions onboard the satellite, as well as

the communication units at the station on Earth relative to their centralized data system. This is in contrast

to regular data compressors which heavily rely on Shannon entropy, thus, generating unpredictable spatial

and temporal scenarios per se. Furthermore, our communication units at the station shall deal with these

equal sized packets, and no matter the time length of execution, scalable down to real-time scenarios based

on the hypercube technology installed as many-core CPUs recognizable in the supercomputer and server-

mainframe of the system.

9
 The notion of having ―equipartitioned fragments‖ is to address the bottleneck problem on the overall stored data in

terms of fragments which decreases performance. However, equipartitioned fragments have the opposite meaning,

giving high performance ability for the processors to process the partitioned version against/compared to its

unpartitioned version which is purely fragmented (bad performance).

62

The external execution from Space-to-Earth and Earth-to-Space, on the other hand, bear the barrier

point of light speed which has been clearly elaborated in § 2.1 on our worst-case scenario factors. This

means, this latency is unavoidable when the Satellite reaches farther distances in space (recall Bob‘s worst-

case scenario), whereby the only solution for this, is hypothetically including/assimilating PTDV-SHAM

[22], as a time-varying memory component, sender-receiver onboard the satellite, which superposes the

signal from source to destination.

So, the overall execution by average, is a number of finite time steps between communication units in

Space and on Earth with respect to real-time performance, which should be a ratio of 1:n as rationalized in

§1.2.2, of our evaluation.

The time cycles between CPU and its components, benefiting from the basic I/O instruction set

software stored on an EPROM, must be as short as 2 time cycles. This is maintained in terms of

signal_send and signal_recieve between the cores and components denoting interrupt service routines, later

known as AWK and IRQ signals (initially inducted at the conceptual level, § 3.1.2.) relative to other forms

of instructions for inter-process communications. Such communications could be initiated as CYC and

R/W, which should be known to the system designer and programmer. Since the CPU technology uses as

multi-core to many-core in its architecture, we expect a hypercube performance on any errors to be detected

and corrected between the core data process dimensions (see also Murdocca & Heuring, §9.4 [50]). The

number of dimensions D, to compute time, could be given by

 (4)

where n is the number of processors, or in this case, cores with cyclic instruction tasks to communicate

with other hardware components. Thus, shortening the time cycles with more cores is based on more

communication paths using the above equation, which delivers more routing points (or n connections

meeting at each processor/vertex). Therefore, a 2 cycle/2n-core attaining real-time scenarios is a fact of

practice on making our execution/time behavior as efficient as possible. In return, we also expect the very

notion of communication delays onboard the satellite between analyzers and acquisition agents normalized

and consistent by the many-core CPU solution.

Guidelines for designing tasks call for a task assignment that minimizes operating system context

switching and those overhead, increasing system throughput and reducing processing latency has been

already strategized and illustrated using e.g. soft-switch hypercube solutions and semaphores like in Fig. 4.

Fig. ExV1, uses a UML Deployment Diagram to show the processors located in the base UE unit, and the

communication paths between them.

The choice of operating system was guided by the strategy Use the UE RTOS real-time operating

system (issue High Performance).

Fig. ExV1. Processors for UE‘s base unit in Space

Fig. ExV2 shows some of the platform elements provided by the RTOS operating in Space while

having a mirrored version at the station on Earth. There is one common address space shared by a number

of tasks and interrupt service routines. To create an instance of a task, addressing task allocation issues, the

programmer assigns to it a message queue and a program counter. Entity modules are assigned to tasks, and

device managers are assigned to interrupt service routines.

63

Fig. ExV2. UE RTOS platform elements used in UE. ISR = interrupt service routine; ORS = optimize and relay

signaler.

5.1.1. Defining Runtime Entities

Task Assignment Meta-model and Execution Deadlines

The strategy Create a task for each unique processing deadline (issue High Performance) was used to

assign entity modules to talks. Entity modules are organized into priority groups during resource budgeting.

There is one priority group for each processing deadline found in the timing requirements of requirements

specification. Then each priority group is assigned to a separate task.

Fig. ExV3. Upper-image: Meta-model for UE task structure in Space; lower-image: meta-model for UE CCS task

structure on Earth

UE tasks have the structure shown in Fig. ExV3, the upper image for the task onboard the craft and the

lower for the task at the station on Earth. A priority group is implemented in the module view by a

64

GroupControl module. The GroupControl module contains the control logic software that routes the

message to the appropriate entity (EntityModule). Messages contain the UEDO‘s to which an entity has

subscribed. The entity module has its own control logic (EntityControl) that selects the appropriate entity

function based on message type. When message processing is complete, the entity module returns control

to the GroupControl module.

Because entity modules receive all inputs from the GroupControl module and do not make locking

calls waiting for inputs, they can be moved among processors and tasks. The assignment of an entity

module to a task is based strictly on timing deadlines. If a timing deadline changes, it is very easy to move

an entity module from one task to another. A tool uses a binary description of the GroupControl module to

generate a new source file for it. It is recompiled, and the software is re-linked.

The concept of priority groups made the definition of the tasks in the execution view straightforward.

A task was created for each priority group. For instance, the requirements give the maximum delay for

displaying waveforms and audio at the station, including alarm information, as seen in Table 3 or below.

Processing deadline Maximum Delay Delay Reduction by 2n-Core Inclusion with relative

Adaptive Software Algorithms (Semaphores)

In Space

Main signal state processing delay 0.8 s 800 msec.0 s

Compressed state processing delay 0.4 s 400 msec.0 s

Local waveform processing delay

with compression

0.2 ~ 0.3 s 200~300 msec.0 s

Relay pulse delay to Earth 1.1 s to s 0 s

On Earth

Local processing delay on Earth apart

from simulation processing *

0.4 s 400 msec.0 s

Drift in blip/beep stream 50 msec. 50 msec. 0 s

Alarm annunciation delay 500 msec. 500 msec.0 s

Relay pulse delay to Space 1 s to s 0 s

The explanations on both Space and Earth of the maximum possible delays with subtractions are given

in § 2.1.1, right after product factors.

In a couple of cases, special tasks needed to be added to meet deadline that arose due to the way the

code was implemented, initially. An example of this is the 2n-core communication code or multithreads.

Although, the logical deadline was 400 msec. the way the code was designed meant that the networking

activity had to be completed within a few tens of milliseconds. The new task was created to meet this

timing deadline. The end result was 27 unique deadlines giving rise to 27 tasks where 9 where executed

concurrently. Thus, 27 – 9 = 18 tasks is the end result. The cost of adding tasks was a concern because each

task has dedicated stack space and the system has reasonable amount of memory space. However,

compressed shared space was considered to execute tasks concurrently without interfering specialized tasks

for a specific set of modules. To keep the stack size under control, the genral rule for developers was that

temporary buffers of k100 kB maintaining the minimum communication levels intact with the system (see

Step 3, Fig. 1), and thus the larger buffers should be allocated from the heap regardless of having a

compressed reserved space to share tasks from one another.

65

5.1.2. Communication Paths

Main Processors and more on Deadlines

Fig. CnV4, in the Conceptual View, shows two types of connectors between entities. The UEDO connector

is typical connector between entities, and its communication is as follows:

When an entity produced new UEDO data, it uses data manager‘s write managers. The data manager

maintains a list of entities registered to receive updates of a particular UEDO. In addition to updating the

UEDO data in the data repository, the data manager calls the IPC service in the SystemServices subsystem.

This service maintains the mapping between an entity module and the signal collection send queue of the

task in which it resides.

 To meet the stringent, real-time requirements of acquiring and displaying the waveform data, an

additional communication scheme was developed. This is represented in Fig. CnV4, as an optimized Wvf

connector + filtered data onboard. The UE system must keep up with the hardware acquisition of the

incoming data either in Space or on Earth, by accepting new data every 10 msec. and displaying it within 1

second, assuming the range of sec to reduce down to 0s or real-time, addressing the light barrier

problem for far distances in Space compensated by the Wvf optimizer. Processing the data has a less

stringent deadline. The algorithms for signal analysis relative to compression expect data every 400 msec.

The overhead of writing more than 2n100 waveform streams (proportional to the k100 kBps bandwidth

factor) to the data repository to meet the 0.2 + 0.4 = 0.6 s deadline requires more than, thousands of calls

per second, which could be handled by the n-core semaphore soft switch solution (Fig. 4).

The OptimizedWvf connector is implemented as a direct pathway between entities. During parallel

processing, the filtered information (compressed) gives the optimizer (or even Wvf accelerator) a bypass in

case of having an evolved agent-based algorithm (anEvolvedEntity) the opportunity via the second

processor (focused on compressed data), to bypass the data managers as a mechanism for transferring

waveform data or selected relays of repeated signals (repeated data). Thus each waveform is written to the

data repository once every 400 msec., which saves significant CPU time before being relayed to Earth. To

decouple the acquisition entity from the waveform relay, the entity‘s processing requirements, the

waveform relay unit, tells the acquisition entity via its ABL, which filtered waveforms it wants to relay

rather than wait for it to get processed.

5.1.3. Execution Configuration

Main Processors and more on Deadlines

Fig. ExV4, shows a representative set of tasks for UE‘s main processors. The interface to the signal

processor is through direct memory access. Data queues provide the interface to SignalState processors

via the UE host interface registers. Although all of the tasks have a message queue to simplify the figure,

not all of this is shown.

As previously mentioned, entity modules that are defined in module view are assigned to a task-based

on processing deadlines. Modules with similar processing deadlines are placed in the same task, and the

task itself is assigned a deadline. The longest executing function in the entity must takes less time than the

deadline of the task. Task priorities are based on the task deadline so that tasks would a shorter deadline

have a higher priority.

66

 Fig. ExV4. Tasks on the main processors in UE system

67

The tasks range from the highest priority 10 msec. task, instant priority, and relay priority, down to the

lowest priority background task. The background task is the result of the strategy Implement watchdog

mechanism (issue High Availability), and it uses all spare CPU time to verify that the software image in

terms of compressed binary is not corrupt.

The default connection between tasks is via the data manager. The data manager is divided into two

modules: one for control, and one for UEDO data. The UEDOControl module is linked to each of the tasks,

and it controls the access to the module containing the shared UEDO data and notifies the tasks that have

subscribed to the data. An exception to the default connection is a direct message passing between the 10

msec. and 20 msec. compression tasks, which provide a high speed pipe for passing waveforms. The other

platform software, device management and system services, is placed in binary libraries on the BDB

partition or compressed space with a key, and is also linked statically to each of the tasks that require these

services.

The entity concept could have been supported on these processors by making minor modifications to

the data management and IPC services.

A key strategy for the execution view is that all tasks are created at startup; tasks are never

dynamically created or deleted. A very different architecture with the different rules about bypassing vs.

blocking would have emerged if each evolved entity, dynamically created and deleted its task on demand.

This of course was not the case due to proper partitioning of data and handling it concurrently through a

compressed shared data and memory space.

We further show a Code View architecture which introduces evolutionary programming to handle

specialized task and bypass data management tasks based on a learning algorithm in our system.

6. Code Architecture View
The code view is imperative on issues related to functionality, maintainability, efficiency and reliability

from the software quality evaluation model ISO/EIC 9126-1 [38] on the UE components. The components‘

data is processed, and thus controlled by the 2n-core CPU 02, parallel to incoming external data from either

space or Earth by 2n-core CPU 01 and data acquisition subsystems‘ domain (recall Fig. 1, and the two

CPUs evaluation made in § 1.2.2).

We have therefore further analyzed our UE system requirements to also include a code architecture

satisfying the four quality attributes‘ set from the evaluation model mentioned above.

6.1.1. Code Development Process, Scenarios and Architecture:

Code, Choose, Build, and Deploy

The code view mainly addresses issues raised in the early sections of the report on the backup subsystems

including controllability over hardware components on board the satellite (last paragraph). The time cycles

relative to code execution, must be maintained in terms of signal_send and signal_recieve between the

cores and components, shortly known as AWK and IRQ signals (as given at the conceptual level as well as

execution view, §§ 3.1.2 and 5.)

The following pseudocode shows how such issues must be addressed real-time in parallel to the

routine operations aboard UE. As we have overly-explicated that, in our requirements, we initially need at

least two CPUs comprised of multi-core nanotechnology (§ 1.2.1) with their memories to be installed on-

board the satellite.

68

The following pseudocodes distinguish their tasks from the main core of practice between

components‘ managers (within the CPU 02 domain), acquisition units, and processing (CPU 01).

Pseudocode sample I:

If {C1, C2, C3, …, Cn} = True

Print “OK” //status report on components C1 to Cn list

ElseIf Ci = False //a particular component from the list

Print “Ci is not OK”

Send backup signal to Sat for backup confirmation or AWK signals

Init backup components or Ci’

Repeat Ci procedure for Ci’

End If

The above pseudocode shows a list of UE hardware components on-board and runs real-time tests/checks

inspecting failure (unhealthy or error) otherwise acknowledgment signals (healthy status using AWK). The

test is in fact, merely a monitoring session or status of the components run by CPU02 as i.e. IRQs

(interruption request signals) which in return converted to AWK signals or

IRQi AWKi =1.

Each IRQ comes from a particular component (shown as Ci from the list), and the CPU checks whether the

cycle or IRQ is being sent on the expected time cycle, thus acknowledging the healthiness of that

component (AWK = 1 stands for true). Otherwise, there is a problem concerning the component‘s status.

Therefore,

IRQi AWKi =0 IRQCPU02 IRQi’,

where the last two IRQs, (one broadcasted by the CPU to the backup component, and the other, the

response from the same component), establish a communication path between the CPU and a backup

component or alternative path to replace the faulty component with a new one e.g., activating the circuit-

breaker in Fig. 1, §1.2.1. This is done by initializing (Init) the relevant procedure(s) on the faulty

component Ci now replaced with a new one Ci’. From now on, CPU 02 checks the new component in

terms of IRQi AWKi ’=1.

In parallel, CPU 01 despite of such worst-case scenarios, is doing its job in terms of receiving

incoming signals either from space or Earth as specified, back in Fig. 1. For example, suppose the

developers on Earth develop a new code for UE applications upgrade purposes. They thus send the code to

the satellite or uplink it. To confirm whether their code is reliable enough or compatible aboard the system,

the program or the new algorithm is executed. The system tests and checks that everything is working

according to plan. If e.g., incompatible for some OS reason, the current BIOS system aboard the satellite

collectively allows the minimum restoration protocols to take place i.e., triggering CPU 01 to execute a

cloned version of the previous version via memory, which restores all programs by the cloned compressed

database or partition which benefits from the standards known in Blob computing [53] or binary DB which

in this case represents compressed data (binary data stored as a single entity). This scenario is visible in the

following pseudocode where it executes the newcomer code for all components handled by CPU 02

subsystem domain. If not working properly in terms of AWK and IRQs as a pretest condition, CPU 02

ignores the seriousness of this release and asks CPU 01 to carry out restoration protocols. CPU 02 ignores

this release because it is a new arrival and according to the code header, must first pre-test a new version on

a trial basis. If it turns out that everything is working fine, the system proceeds with the new version

protocols, replacing the old protocols with the new one. The following pseudocode is too high-level, but

shows how this scenario takes place under upgradability circumstances.

Pseudocode sample II:

Deliver new code to CPU02 via CPU01

Run new Code on {C1, C2, C3, …, Cn} //CPU02 is pre-testing

69

While CPU02 pre-tests {C1, C2, C3, …, Cn} Do

Old Code = New Code //assign new values to the old variables chronologically

If New Code or Algorithm = False //assignment becomes false in the pre-testing process

Execute restoration program

Else

Proceed with upgrade //CPU02 is OK with post-testing

End If

End While

The directory structures in Figs. CV1 and CV2, are highly fundamental to the execution of the subroutines

and thus their decision node complexity of the code [45] on synchronicity vs. asynchronous communication

paths between the CPU 02 and other components (or subsystems). Fig. CV1 (or code view1) specifies the

directories before being deployed on the UE spacecraft. This aids the programmers to know what they are

doing during the project development cycle. The documentation or comments directory, [Doc/Comments],

is where documentation outside the code and/or comments within the code are presented for the

programmers during development as their guide or instructions manual. These programmers program the

codes in ANSI C for memory efficient purposes (mostly hardcoded and avoid dynamic ways that require

more processing to spare with), and use a set of coding conventions, most of which are standard. For

example, to ensure the names of the UE hardware components, they are presented in an enumerated list

(enum) starting with the name of the enum itself. If the enum type was C as component according to our

pseudocode above, the main CPU component might be C_CPU, and the blower component might be

C_Blower. However, on a defined efficient level for the compiler, such parts should be presented in terms

of e.g., C01, C02, C03, …, depending on the level of the component‘s role or priority.

Fig. CV2, on the other hand, is the actual directories we require on-board the satellite to get executed which

all data are represented in binary (Bin). The rationale to this selection shall be clarified shortly when the

system self-tests, and executes data on all of its components, and thus establish communication as a self-

automated approach in its architecture.

In Fig. CV1, the source code for the development team on Earth denotes the actual whole code of the

hierarchy. Thus, the [CodeRoot] retains all directories which need to test the hardware components on-

board the UE satellite. This is done via the [Test] directory containing test codes. On the other hand, the

[EntityParallelCode] represents all multithreading or parallel coding procedures needed on an application

level to control the hardware components via [SubsystemsCodeCPU02] parallel to

[SubsystemsCodeCPU01] (parallel time execution paths). The latter, ―SubsystemsCodeCPU01‖, however,

processes data on a ‗compressed DB level‘ and does not care about other hardware components onboard. In

fact, its specific task is to process incoming data from space, and outgoing data to Earth, and vice versa.

This means that, CPU02 is dedicated to certain instructions satisfying functions of other keys of the UE

system, in terms of monitoring other components while controlling them (CPU 02‘s job). In the meanwhile,

CPU01, according to specification, is here to process events after data acquisition techniques on the

incoming signals from the space environment whilst giving out signals via the compressed database (DB).

So, in return, the build-on compilation process on Earth, or [build-on Earth] directory, generates a file,

which is presentable to the developers‘ manager, representing that the UE is functional on all terms of

hardware and software, and thus transmission protocols indeed.

In turn, once the devolvement team finishes the project on all levels of code implementation, they test

([Test] directory) all of the components and thus expect the right results while the UE system learns if any

errors occur. This is handled by the [ABL Control] directory which stands for agent-based learning

algorithm (typically, a learner). It is almost blank in terms of code-depth or layers (highly primitive) at

first (a very short algorithm per Cx variable or component management), and has a set of single nodes.

70

Fig. CV1. UE system data process and control directory structure, before deployment to space, on Earth

These single nodes should learn from the previous mistakes (errors, etc.) and create new nodes for

reiterated negative encounters as the system evolves in terms of upgradability once the ABL monitors in

parallel all ongoing events of other codes (from other directories) via CPU 02. CPU 02 also monitors CPU

01 as one of its primary tasks relative to other hardware components onboard the satellite. The ABL

eventually evolves throughout the course of UE mission and would become a network of nodes, intelligent

enough to even get upgraded unless it becomes a problem e.g., a virus or an invalid algorithm in the

mission. Of course, downloading this virus in aim of studying the problem is vital for future application

upgrades which must be done on a securely confined database (one of the server partitions) at the station on

Earth (see Fig. 3).

Hence, the overriding protocols take place, and the developers on Earth develop a new ABL code as

they uplink to the satellite. This new package, denoted with the [UplinkedPackage] sends all vital

information or upgrades to rest the UE system (like the rebooting procedure on a PC), which gives the

system a fresh start of its operations. (That is why, the multiplicity is 0…* association, where 0 in this case

is a blank document or the erased version ready for an Append, Write, Close, … commands from the

newly-arrived package.) This package is transmitted in pure binary, and the processors must solely deal

with binary values as the most efficient standard to their operations. Similarly, deriving from the

Pseudocode sample II scenario, we have a 0…* association on [SubsystemCodeCPU02] with the

[CodeRoot], due to being of a source code nature, whereas during uplink, it could be erased and thus

71

replicated from scratch. The previous/current version is stored as a backup for ―restoration purposes‖ as

specified in the scenario.

Fig. CV2. UE system data process and control directory structure, after deployment to space/after launch

Therefore, for our requirements‘ engineering, the programming language on updates must be a

machine language, highly-deployable to the UE units from Earth, and efficient, in terms of hardware-

software component management issues by either CPU.

Bear in mind, in both figures, we have avoided too many connections drawn from the lower directories

to their higher ones, relative to the component level (source code), by simply saying that the connections

are inherited from an upper to their lower, in this directory structure.

6.1.2. Development Strategy with UE ABL:

Choose, Learn from Mistakes, Build, and Reconfigure the Code

The developers develop the code and maintain low-level programming e.g., Assembly, by their manual

code conversion as they type (Fig. CV1), since the technology mainly deals with LDC techniques for its

data transmissions between space and Earth.

Therefore, e.g., if the enumerative mnemonic type is the MOV instruction in x86 Assembly, data unit

displacement in terms of load, copy or store from one register to another, must also be presented in binary

without disrupting other communicators onboard, especially CPU 01. In turn, the LDC while having LDD

72

outputs via a key (FBAR TT) installed,
10

 must also not interrupt such needy operations between registers

and reference point to carry out a certain operation, like real-time test on components which concern the

monitoring aspect of CPU 02 domain. The following could be a good example on a binary packet

instruction level change from 16-bit to 32-bit (from [42]), where double-efficient LDCs relative to such

changes in compacting data would still remain intact on this operation. Since such lossless compressors

deal with 8-by-8, 16-by-16 bit, 32-by-32 bit… binary-to-any data type and vice versa conversions, the

packets in their data conversions or encoding techniques e.g., if 50% LDC, thus the 32-bit is 16-bit at the

compression phase, and thereby at the decompression phase, gives out 32-bits expectably (see also abstract

[6]).

MOVZX EAX, BX

This code moves the higher-byte of the 16-bit register BX into the 32-bit register EAX.

So, this requirement, once implemented on the instruction set compression-level, also fulfills the

compatibility issue between hardware and software technologies during UE software upgrades as uplinked

by humans via the CCS system from Earth.

These programming assignments are mainly focused on the DB transactions‘ site maintaining

communications protocol when an uplinked source code is installed on the system, while incoming data

from the space environment is processed in parallel.

From our execution view, we can understand that why it is imperative to have our OS as low-level as

possible, which also provides us error logs on the database at a macro scale, and thus an agent-based

system (ABM), as the ABL onboard the satellite, aims to learn from those errors which lead to efficient and

reliable monitoring of all events between components relative to space environment.

The UE ABL which evolves from the UE system‘s previous mistakes from a stupid or blank state of

minimal node evolution to a maximal node evolution, is then classed as being highly-weighted in terms of

AI (artificial intelligence). For example,

Pseudocode sample III:

Algorithm A START

If x > n //x is some sensory variable

Report error

Else

Resume

End If

HALT

then,

UE ABL START //this is the UE ABL algorithm on x

If Algorithm A reports an error

Monitor events by other algorithms or CPUs

Record error detection

Record error correction

Create Algorithm B as a new node

End If

HALT

10
 This lossless data compressor (LDC) with fixed compression ratios (preventing any information probability or

randomness on time and data), with its universal translation table (TT) was earlier introduced in iii, §1.2.1, or see [6].

73

where,

Algorithm B START //this is the new node generated by UE ABL

If x > n

End or erase Algorithm A

Do correction //execute the shortest path without error report and detection

End If

HALT

Thus, the generated new node by the UE ABL is more efficient than the classical ‗Algorithm A‘ in terms of

executables and cyclomatic complexity [45, 46], which is self-learned or experienced from the previous

mistake(s), and instead of reporting, uses the shortest path possible to do correction via relevant kernel

components (e.g., CPU02). Just like any wise human who does not want to repeat his/her own previous

mistake(s) iteratively (like learning the major lesson from your own past history), the node eliminated the

dependency on the ‗Else‘ decision and executable points from the initial ‗if statement‘.

6.1.3. UE ABL Evaluation

Is it a Blackboard Architectural Approach? - What does it learn? - Is it a Risk?

1- What exactly does the UE ABL learn onboard the satellite?

Learning scenario initiatives: The unpredictability in the space environment becomes predictable in the

long run by an evolved ABL control network, when e.g., UE experiences Jupiter‘s intense gravitational

field that have affected too much some of the body parts, next time, when revisiting this planet or some

similar planetary state out in space, the UE knows how to avoid getting too close to the planet‘s system.

Thus, gathering data from a safer point is done preemptively. Another example is the Bob‘s scenario in

§2.1, where UE went off scale on its sensory calculations regarding distance, etc. due to a solar burst. Next

time, the ABL has got the sensitive information on this unique instance as a combination of previous events

detected and corrected from Earth to UE. So, even if a similar burst occurs, Bob doesn‘t have to worry and

uplink new coordinates to UE, in fact, UE resumes its course in the right direction!

Evolutionary programming: The UE ABL nodal creations (resulting in a learning network topology)

leads to evolutionary programming for managing both CPUs‘ instruction set plus their communication

paths for their interacting components. From the evolutionary viewpoint, the software packages used today

are designed for serial von-Neumann computer architectures, which is a downgrade to our initial design

representation made in § 1, supporting parallel processing indeed.

This limits the speed and scalability of these systems. A recent development is the use of data-parallel

algorithms on Graphics Processing Units (GPUs) for ABM simulation [39, 40], and [41]. The extreme

memory bandwidth combined with the sheer number crunching power of multi-processor GPUs has

enabled simulation of millions of agents at tens of frames per second.

Thus, a micro scale adaptation of such algorithms to our UE system by the development team, and thus

hardware strategists could maintain stability in the UE‘s 50-year mission, and is by teaching the units how

to adapt under complex or even unpredictable circumstances, thus providing us information on a very

efficient scale. This, as a result, entails Verification and Validation issues on those newly-upgradable

components that are ought to be employed onboard the satellite with a main impact on the execution view.

74

2- Is UE ABL based on a blackboard architectural approach?

Our choice and motivation: The current ABL sample is definitely a relatively-growing node behavioral

system reflecting its growing neural network design which interestingly, sometimes abstracts the design.

For instance, based on its cleaver replacements or removal of certain software components (via Algorithm

B from Pseudocode sample III) when necessary, the blackboard architectural style is evident and even if a

component fails, the ABL will not fail, typical to a ‗pipes and filters‘ architectural style. Furthermore, the

varying performance issue from the blackboard style is less experienced aboard the satellite, since the

supportive technology is 2n-core processors, however, the notion of low reliability in terms of non-

deterministic execution or difficult to debug [49], must also be self-embedded within the ABL program. It

is aboard this satellite that of course low security is in view for monitoring all removable/replaceable

components relative to their main processors. This, however, could not be changed due to Earth base

critical-related scenarios where overriding procedures to reprogram, its removal and replacement of the

ABL component with other versions when affected (for some unknown reason), is crucial in our design.

Therefore, the operators on Earth will have no problems in controlling the satellite system under critical

circumstances.

3- Isn’t it risky to always have the ABL onboard when it learns more and more from the system

as well as the space environment?

This learning system should not be a risk, since the satellite should know enough via the ABL algorithm

when sent to space. The database on the satellite will never be filled, since the information will be sent to

the Earth base/station and stored there through proper relay of signals using tuners/wvf optimizers or

compensators installed aboard the satellite

4- Will the UE database onboard ever gets filled when the ABL grows?

As we have on many occasions explicated that it would be bad system to have a compressed database

filled. The system not only relays most of the raw data to earth, it will also only collate and store vital

information relevant to the system after pre-processing on a temporary basis for its learning algorithm.

Furthermore, we have considered the fixed compression ratio standard via FBAR [6] to function

accordingly (see early sections), and based on this compressed data, only having a static key (a TT file), all

data is dealt with as the right information during pre-process and post-processing reads and instruction set

executions.

The ABL is here to always avoid and tackle the risks coming from space as well as the components onboard

in case failure. The ABL is not here to pose a threat to its system or to be a risk!

In either case, when this very component becomes a threat, the Earth station has got its overriding protocols

intact with the whole system to be executed, as exemplified for the worst-case scenario e.g., Bob‘s

protocols in action (recall §2.1).

7. Summary
The main foci of our architecture were on maintaining all-time communications between UE in space and

Earth while UE sustains its structural integrity in space i.e. its main hardware via software managers.

Because of performance requirements, shortest, lengthiest against real-time data-send and receive, there

were evident constraints in Space, such as the problem of external latency issues when the UE system gets

farther from Earth into space, the speed light barrier overcomes the communication systems in terms of

75

minutes, hours, or in its last portions of the journey, days and months. Although, we have shown that the

many-core CPU solution with the right software, tackles problematic entity model and entity-to-task

assignments onboard the satellite, the implementation solution on assimilating signal accelerators, tuners

and compensators, etc., for compensating external latency issues, was a pre-emptive strategy to

contemplate. Therefore, hypothetical technological factor like, strategizing the usage of the PTVD-DHAM

component was relevant to this problem.

On the software part, however, the evolutionary programming entities is of importance to the hardware

components on board, such as the backup system, prior to the controllers, communicators and processors,

which should evolve in 50 years relative to satellite‘s adaptability to the harsh physics of space. The code

evolution is based on responsive ways to ―do correction‖ rather than ―first detect, then correct‖ scenarios

from the UE‘s previous physical encounters in space, like temperature, pressure, etc. To this account, we

further used the read/write functions onboard the satellite, not only for the learning algorithm, also for the

BDB and other memory components like the EPROM which is programmable for a new set of instructions

to be carried out by the CPU relative to Space environment.

The fixed space-time LDC ratio solution, on the data compression technology, is relevant according to

our technological factors on communication between Space and Earth, addressing issues related to high-

performance, integrity and efficiency. Moreover, it is essential to have a BDB (binary database)

compressed with fixed compression ratios rather than random compression ratios. If random, this affects

our execution viewpoint i.e. random time behavior, but fixed ratios generate fixed time behavior as well as

memory space occupation for the loosely coupled entities onboard the satellite. Therefore the 2n-core CPU

solution from a runtime perspective for maintaining real-time performance by corresponding to the

asynchronous communication between entities with a ratio of 1/n seconds (descending to values close to 0)

is hereby reiterated.

Since the satellite whole system in space is not retrievable with affordable strategies, we thus had to also

challenge current hardware technologies with those being tested under laboratorial conditions or latest

products evaluated by the space industrialist.

In summary, for all the above issues, we were drove to use of these concepts:

 Entities: must of the system is composed of loosely coupled entities. Entities do not communicate

directly with one another; all communication occurs via connectors. Inside the entity, the control is

separated from the processing, and it is standard across all entities. Entities are non-blocking,

enabling entities to be moved to different tasks.

 Connectors: UE‘s connectors use a data manager and a repository to support data sharing among

components such as entities. The connector protocol is published/subscribed, with asynchronous

responses to data requests. An optimization was added that aggregates messages to/or from the

data repository. This lowers the IPC message rate by sending multiple data repository updates to

an entity in one message.

 Tasks: the assignment of entities to tasks is based on the similarity of their deadlines rather than

the similarity of their functionality. Like entity control, task control is standard across all tasks.

 Mediators: interaction between subsystems that use different interaction mechanisms is done

through mediators which could evolve during the 50 year UE mission. Mediators provide uniform

data access to both producers and consumers, hide the location of the data, and decouple both

sides from each other. Agents and evolved agents are an example of mediators, mediating between

software entities and device managers that use different protocols and different data formats.

76

 Layers: standardized API‘s are used to isolate dependencies among layers. UE uses interface

binary libraries isolating the dependencies on the hardware, operating system, and device

managers.

With these concepts as the basis for the architecture, UE was successfully built. These concepts were

developed without deliberate use of design patterns or component/connector architecture concepts, which

were not generally known at the time of the architectural design. Similar concepts were invented, but it

would have been more tangible to have used existent technology explaining the efficiency aspects of our

UE system.

References
[1] C. Hofmeiester, R. Nord and D. Soni, Applied Software Architecture, Chaps. 4-6, and 8-10, 2000.

[2] Mayo-Wells, ―The Origins of Space Telemetry,‖ Technology and Culture, 1963.

[3] G. Brown, ―How Satellites Work‖ at: http://www.howstuffworks.com/satellite.htm/printable Accessed Sept.

2010.

[4] NASA, Statement of D. S. Goldin (Administrator) National Aeronautics and Space Administration (NASA)

before the Subcommittee on Science, Technology, and Space Committee on Commerce, Science, and

Transportation United States Senate, Sep. 23, 1998; or see

http://www.howstuffworks.com/framed.htm?parent=satellite.htm&url=http://www.hq.nasa.gov/office/legaff/

9-23gold.html Accessed Sept. 2010.

[5] Satellite Dictionary: http://www.satellites.spacesim.org/english/glossary/sz.html, Accessed Sep 2010.

[6] P. B. Alipour and M. Ali, ―An Introduction and Evaluation of a Fuzzy Binary AND/OR Compressor,‖ an

A/1st-class M.Sc. Thesis, MSE-2010-21, Blekinge Inst. of Tech., Sweden, May 2010.

[7] C. E. Shannon, ―Theory of Data Compression,‖ Redirected from EFF: Electronic Foundation Frontier

group, http://www.datacompression.com/index.shtml. 2000.

[8] International Union of Pure and Applied Chemistry. "Photodiode". Compendium of Chemical Terminology

Internet edition. Retrieved on 16 Sep, 2010.

[9] R. D. Antonov and A. T. Johnson, ―Subband Population in a Single-Wall Carbon Nanotube Diode,‖ in Phys.

Rev. Lett. 83, APS Phys. J., pp. 3274–3276, 1999.

[10] R. Yan, W. Liang, R.Fan and P. Yang, ―Nanofluidic Diodes Based on Nanotube Heterojunctions,‖ Nano

Lett., 9 (11), American Chemical Society, pp. 3820–3825, 2009.

[11] ―Beyond Batteries: Storing Power in a Sheet of Paper‖. Eurekalert.org. August 13, 2007.

http://www.eurekalert.org/pub_releases/2007-08/rpi-bbs080907.php. Retrieved 2008-09-15

[12] E. Flahaut, R. Bacsa, A. Peigney, C. Laurent. ―Gram-Scale CCVD Synthesis of Double-Walled Carbon

Nanotubes‖. Chemical Communications 12 (12): 1442–1443, 2003. doi:10.1039/b301514a

[13] Y. Fan, X. Zhong, J. Liu, T. Wang, Y. Zhang, Z. Cheng, ―A Study of Effects of Coolants on Heat Transfer

Capability of On-chip Cooling with CNT Micro-fin Architectures by Using CFD Simulation,‖ IEEE

proceedings of HDP, 2007.

[14] Y. Fan, X. Zhong, J. Liu, T. Wang, Y. Zhang, Z. Cheng, ―Computational fluid dynamics for effects of

coolants on on-chip cooling capability with carbon nanotube micro-fin architectures,‖ Springer tech. paper,

15(3), pp. 375-381, 2009. DOI: 10.1007/s00542-008-0742-9

[15] Preventing heat escape through insulation called "aerogel", NASA CPL

[16] M. L.; Nuckols, . C. Chao J and Swiergosz M. J. (2005). ―Manned Evaluation of a Prototype Composite Cold

Water Diving Garment Using Liquids and Superinsulation Aerogel Materials‖. United States Navy

Experimental Diving Unit Technical Report NEDU-05-02. http://archive.rubicon-foundation.org/3487.

Retrieved 2008-04-21.

[17] M. Bryning, D. Milkie, M. Islam, L. Hough, J. Kikkawa, and A. Yodh, Carbon Nanotube Aerogels.

Advanced Materials, 19: 661–664, 2007. doi: 10.1002/adma.200601748

[18] M. Berger, Nanowerk Nanotechnology Spotlight posts at:

http://www.nanowerk.com/spotlight/spotid=1619.php Accessed Sep 2010.

[19] Olexa P. Bilaniuk; E. C. George Sudarshan, (May 1969). "Particles beyond the Light Barrier". Physics

Today 22 (5): 43–51. doi:10.1063/1.3035574.

[20] Bilaniuk, Olexa-Myron P.; Deshpande, Vijay K.; Sudarshan, E. C. George (1962). "Meta Relativity".

American Journal of Physics 30: 718ff. doi:10.1119/1.1941773.

http://www.howstuffworks.com/satellite.htm/printable%20Accessed%20Sept.%202010
http://www.howstuffworks.com/satellite.htm/printable%20Accessed%20Sept.%202010
http://www.howstuffworks.com/framed.htm?parent=satellite.htm&url=http://www.hq.nasa.gov/office/legaff/9-23gold.html
http://www.howstuffworks.com/framed.htm?parent=satellite.htm&url=http://www.hq.nasa.gov/office/legaff/9-23gold.html
http://www.satellites.spacesim.org/english/glossary/sz.html
http://www.datacompression.com/index.shtml
http://goldbook.iupac.org/P04598.html
http://en.wikipedia.org/wiki/Compendium_of_Chemical_Terminology
http://www.eurekalert.org/pub_releases/2007-08/rpi-bbs080907.php
http://www.eurekalert.org/pub_releases/2007-08/rpi-bbs080907.php.%20Retrieved%202008-09-15
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1039%2Fb301514a
http://www.springerlink.com/content/0946-7076/15/3/
http://marsrovers.jpl.nasa.gov/mission/sc_rover_temp_aerogel.html
http://archive.rubicon-foundation.org/3487
http://archive.rubicon-foundation.org/3487
http://en.wikipedia.org/wiki/United_States_Navy_Experimental_Diving_Unit
http://en.wikipedia.org/wiki/United_States_Navy_Experimental_Diving_Unit
http://archive.rubicon-foundation.org/3487
http://feedburner.google.com/fb/a/mailverify?uri=NanowerkNanotechnologySpotlight&loc=en_US
http://www.nanowerk.com/spotlight/spotid=1619.php
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1063%2F1.3035574
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1119%2F1.1941773

77

[21] G. Feinberg, "Possibility of Faster-Than-Light Particles". Physical Review 159: 1089–1105, 1967.

doi:10.1103/PhysRev.159.1089.

[22] P. B. Alipour, ‗Logic, Design and Organization of Prallel Time Varying Data and Time Super-helical

Memory As; PTVD-SHAM‘, article id. arXiv: 0707.1151, CompSci. Ar. ArXiv.org., pp. 1-33, 2007.

[23] P. B. Alipour, ‗Theoretical Engineering and Satellite Comlink of a PTVD-SHAM System‘, article id.

arXiv:0710.0244, Comp. Eng., Finance, and Sci. (cs.CE); Hardware Architecture (cs.AR). ArXiv.org., pp. 1-

33, 2007. Project license No. TXU001347562, Library of Congress, USA, ©2007.

[24] or see http://en.wikipedia.org/wiki/Solar_flare

[25] Abhyankar, K.D. (1977). "A Survey of the Solar Atmospheric Models". Bull. Astr. Soc. India 5: 40–44.

http://prints.iiap.res.in/handle/2248/510.

[26] S. K. Solanki et al. (1994). "New Light on the Heart of Darkness of the Solar Chromosphere". Science 263

(5143): 64–66. doi:10.1126/science.263.5143.64. PMID 17748350.

http://www.sciencemag.org/cgi/content/abstract/263/5143/64.

[27] Gravity Assist, see for instance: http://en.wikipedia.org/wiki/Gravity_assist Accessed Sept. 2010.

[28] Redirected Articles on: Amdahl's law and supercomputers, available at:

http://en.wikipedia.org/wiki/Supercomputer#cite_note-3

[29] D. P. Rodgers (June 1985). ―Improvements in multiprocessor system design‖. ACM SIGARCH Computer

Architecture News archive (New Yorok, NY, USA: ACM) 13 (3): 225–231. doi:10.1145/327070.327215.

ISSN 0163-5964

[30] Serway, Raymond A. (1990). Physics for Scientists & Engineers (3rd ed.). Saunders. pp. 1150.

ISBN 0030302587.

http://books.google.com/?id=RUMBw3hR7aoC&q=inauthor:serway+photoelectric&dq=inauthor:serway+ph

otoelectric.

[31] Francis W. Sears, W. Mark, Zemansky and D. Y. Hugh (1983), University Physics, Sixth Edition, Addison-

Wesley, pp. 843-4. ISBN 0-201-07195-9.

[32] Joachim and Muehlner, "Trends in Missile and Space Radio Telemetry" declassified Lockheed report

[33] L. A. Zadeh, et al. 1996 Fuzzy Sets, Fuzzy Logic, Fuzzy Systems, World Scientific Press, ISBN 9810224214

[34] Apply truth values, Fuzzy Logic at http://en.wikipedia.org/wiki/Fuzzy_logic Accessed Sep 2010.

[35] Krasinsky, G. A.; Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, and E. I. (July 2002). "Hidden Mass in the

Asteroid Belt". Icarus 158 (1): 98–105. doi:10.1006/icar.2002.6837.

http://adsabs.harvard.edu/abs/2002Icar..158...98K.

[36] E. V. Pitjeva. ―High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical

Constants‖. Solar System Research 39 (3): 176, 2005. doi:10.1007/s11208-005-0033-2. http://iau-

comm4.jpl.nasa.gov/EPM2004.pdf.

[37] The definition of Overhead information at: http://en.wikipedia.org/wiki/Overhead_information, Accessed

Sep. 2010.

[38] ISO/IEC 9126-1:2001 Software engineering — Product quality — Part 1: Quality model, ISO 9126: The

Standard of Reference 2001 or see Information technology - Software Product Evaluation - Quality

characteristics and guidelines for their use – 1991, at http://www.cse.dcu.ie/essiscope/sm2/9126ref.html,

Accessed Sept. 2010.

[39] Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National

Academy of Sciences. May 14, 2002.

[40] Holland, J.H.; Miller, J.H.; (1991). ―Artificial Adaptive Agents in Economic Theory‖. American Economic

Review 81(2): pp. 365–71.

[41] Application of Agent Technology to Traffic Simulation. United States Department of Transportation, May

15, 2007.

[42] "Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual".

http://developer.intel.com/design/pentiumii/manuals/243191.htm. Retrieved 2007-07-13.

[43] http://www.assembly.happycodings.com/index.html

[44] Multi Core Technology, Intel® Corp, technology, at http://www.intel.com/multi-core/ or see

http://en.wikipedia.org/wiki/Multi-core_processor Accessed Sep. 2010.

[45] A. H. Watson, T. J. McCabe, and D. R. Wallace (Ed.), ―Structured Testing: A Testing Methodology Using

the Cyclomatic Complexity Metric,‖ Simplified complexity calculation. National Inst. of Stand. and Tech.

Pub., USA , pp. 23–29, 1996.

[46] T. J. McCabe, ―A Complexity Measure,‖ IEEE Transactions on Software Engineering: Vol. SE-2, No. 4, pp.

308–320, 1976.

[47] Hot carriers or hot electrons at: http://www.siliconfareast.com/hotcarriers.htm Accessed Oct. 02, 2010.

[48] J. P. Hayes, T. Mudge, Q. F. Stout, S. Colley, and J. Palmer, A microprocessor-based hypercube

supercomputer. IEEE Micro 6, 5 (Oct. 1986), 6-17. DOI 10.1109/MM.1986.304707

[49] M. Svahnburg, Lecture Notes on Software Architecture and Quality. Blekinge Institute of Technology,

http://en.wikipedia.org/wiki/Gerald_Feinberg
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1103%2FPhysRev.159.1089
http://en.wikipedia.org/wiki/Solar_flare
http://prints.iiap.res.in/handle/2248/510
http://prints.iiap.res.in/handle/2248/510
http://www.sciencemag.org/cgi/content/abstract/263/5143/64
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1126%2Fscience.263.5143.64
http://en.wikipedia.org/wiki/PubMed_Identifier
http://www.ncbi.nlm.nih.gov/pubmed/17748350
http://www.sciencemag.org/cgi/content/abstract/263/5143/64
http://en.wikipedia.org/wiki/Gravity_assist%20Accessed%20Sept.%202010
http://en.wikipedia.org/wiki/Supercomputer#cite_note-3
http://portal.acm.org/citation.cfm?id=327215
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F327070.327215
http://en.wikipedia.org/wiki/International_Standard_Serial_Number
http://www.worldcat.org/issn/0163-5964
http://books.google.com/?id=RUMBw3hR7aoC&q=inauthor:serway+photoelectric&dq=inauthor:serway+photoelectric
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0030302587
http://books.google.com/?id=RUMBw3hR7aoC&q=inauthor:serway+photoelectric&dq=inauthor:serway+photoelectric
http://books.google.com/?id=RUMBw3hR7aoC&q=inauthor:serway+photoelectric&dq=inauthor:serway+photoelectric
http://en.wikipedia.org/wiki/Special:BookSources/0201071959
http://en.wikipedia.org/wiki/Special:BookSources/9810224214
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1006%2Ficar.2002.6837
http://adsabs.harvard.edu/abs/2002Icar..158...98K
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1007%2Fs11208-005-0033-2
http://iau-comm4.jpl.nasa.gov/EPM2004.pdf
http://iau-comm4.jpl.nasa.gov/EPM2004.pdf
http://en.wikipedia.org/wiki/Overhead_information
http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
http://www.pnas.org/cgi/content/full/99/suppl_3/7280
http://en.wikipedia.org/wiki/United_States_National_Academy_of_Sciences
http://en.wikipedia.org/wiki/United_States_National_Academy_of_Sciences
http://www.tfhrc.gov/advanc/agent.htm
http://en.wikipedia.org/wiki/United_States_Department_of_Transportation
http://developer.intel.com/design/pentiumii/manuals/243191.htm
http://developer.intel.com/design/pentiumii/manuals/243191.htm.%20Retrieved%202007-07-13
http://www.assembly.happycodings.com/index.html
http://www.intel.com/multi-core/
http://en.wikipedia.org/wiki/Multi-core_processor
http://www.siliconfareast.com/hotcarriers.htm
http://dx.doi.org/10.1109/MM.1986.304707

78

Karlskrona, Swede, Sept. 2010.

[50] M. J. Murdocca and V. P. Heuring, Communication Errors and Error Correcting Codes, Principles of

Computer Architecture, Addison-Wesley Longman Publishing Co., Inc, pp. 358 - 369, 2000.

[51] Hypercube Connectivity within ccNUMA Architecture, Silicon Graphics Origin 2000, or see,

http://www.risc.jku.at/education/courses/ws2000/intropar/origin/hypercube.pdf Accessed Oct. 2010.

[52] T. Theil, ―The Design of the Connection Machine,‖ Design Issues, Volume 10, Number 1, Spring 1994.

[53] Blob (computing) at http://en.wikipedia.org/wiki/Blob_(computing) Accessed Oct. 2010

[54] E. W. Weisstein, ―Asymptote.‖ From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/Asymptote.html, Accessed Oct. 2010.

[55] J. L. Gustafson, ―Increasing Hypercube Communications on Low-Dimensional Problems‖, Floating Point

Systems, Inc. 1986, or see http://johngustafson.net/pubs/pub12/Knoxville.pdf Accessed, Oct 2010.

[56] B. Elbert, ―Satellite Data Communications using VSAT Systems – Extending IT Networks to the Global

Context‖, Application Technology Strategy, Inc. 2001-2010 at:
http://www.applicationstrategy.com/VSAT_networks.htm Accessed Oct 2010.

http://www.risc.jku.at/education/courses/ws2000/intropar/origin/hypercube.pdf%20Accessed%20Oct.%202010
http://en.wikipedia.org/wiki/Blob_(computing)
http://mathworld.wolfram.com/Asymptote.html
http://johngustafson.net/pubs/pub12/Knoxville.pdf
http://www.applicationstrategy.com/VSAT_networks.htm

