
University of Victoria

Traffic Pattern Analysis and
Comparison of Distributed Deep

Learning Models

Student :
Li He

Instructor :
Jianpin Pan

April 18, 2025

CONTENTS CONTENTS

Contents
1 Introduction 2

2 Distributed Training Approaches 3
2.1 Data Parallelism . 3
2.2 Model Parallelism . 4
2.3 Hybrid Approaches . 4

3 Network Topologies for Distributed Training 5
3.1 Ring . 5
3.2 Fully Connected . 5
3.3 Switch . 6

4 Real-world Experiments 7
4.1 Alliance of Canada . 7
4.2 Distributed Training on Alliance HPC Clusters 7
4.3 Numerical Results . 8

5 ASTRA-sim Simulator 9
5.1 Experimental Settings . 9

5.1.1 System settings: . 9
5.1.2 Workload generation: . 10

5.2 Simulation Results . 11
5.2.1 VGG16 . 11
5.2.2 ResNet50 . 12
5.2.3 GPT-3 . 13

5.3 Overall Insights . 14

6 Conclusions and Future Work 15
6.1 Conclusion . 15
6.2 Future Work . 16

1

1 INTRODUCTION

Abstract
This research investigates the network traffic patterns generated during distributed train-
ing of deep neural networks across different hardware architectures and topologies. As
deep learning models continue to grow in size and complexity, single-device training be-
comes increasingly impractical, necessitating distributed training approaches that intro-
duce significant communication overhead. We analyze the communication patterns, bot-
tlenecks, and efficiency tradeoffs between NVIDIA DGX-2 systems and Tensor Processing
Units (TPUs) when training various deep learning models, including VGG16, ResNet50,
and GPT-3. Our methodology combines real-world experiments on the Alliance of Canada
infrastructure with detailed simulations using ASTRA-sim, a distributed machine learn-
ing simulator. Results demonstrate significant differences in communication efficiency
between platforms, with TPUs exhibiting superior network performance despite DGX-2’s
computational advantages. We observe that model parallelism generates substantially
more communication overhead than data parallelism, particularly for larger models, and
that fully-connected layers represent critical bottlenecks in the communication pipeline.
These findings provide valuable insights for optimizing distributed training configurations
based on model architecture, hardware platform, and network topology, potentially re-
ducing training time and resource utilization for large-scale deep learning workloads.

1 Introduction
Deep neural networks (DNNs) have revolutionized numerous domains, including computer
vision, natural language processing, speech recognition, and recommendation systems.
Their remarkable capabilities come with significant computational demands, driven by
increasingly complex architectures and massive training datasets. Modern state-of-the-art
models like GPT-3 [1] contain hundreds of billions of parameters, requiring computational
resources far beyond what a single accelerator can efficiently provide.

Distributed deep learning [2, 3, 4] has emerged as the primary solution to this chal-
lenge, enabling researchers and engineers to train increasingly sophisticated models by
distributing the workload across multiple accelerators, often spanning multiple physical
machines. However, this distribution introduces a new dimension of complexity: network
communication. When training is distributed, processors must frequently exchange in-
formation such as gradients, model parameters, and activations, generating substantial
network traffic that can become a performance bottleneck.

The efficiency of distributed training depends on multiple interconnected factors [5,
6, 7]: the choice of parallelization strategy (data parallel, model parallel, or hybrid ap-
proaches), the underlying hardware architecture (GPUs, TPUs, or specialized accelera-
tors), the network topology connecting the compute nodes, and the specific characteristics
of the model being trained. Optimizing these elements requires a detailed understanding
of the resulting traffic patterns and how they impact overall training performance.

Despite the importance of network communication in distributed training, there re-
mains a gap in the literature regarding a detailed analysis of traffic patterns across dif-
ferent hardware platforms and model architectures. Most existing research focuses either
on algorithmic improvements to reduce communication overhead or on optimizing specific
hardware configurations, without a comprehensive cross-platform comparison.

This project addresses this gap by conducting a systematic analysis of traffic patterns

2

2 DISTRIBUTED TRAINING APPROACHES

generated during distributed deep learning training. We compare two leading hardware
platforms - NVIDIA DGX-2 systems (https://www.nvidia.com/en-in/data-center/
dgx-2/) and Google’s Tensor Processing Units (TPUs) (https://en.wikipedia.org/
wiki/Tensor_Processing_Unit) - across multiple model architectures and network topolo-
gies. Our investigation employs both real-world experiments on the Alliance of Canada
high-performance computing infrastructure and detailed simulations using ASTRA-sim,
a specialized simulator for distributed AI systems developed by Intel, Meta, and Georgia
Tech.

The primary objectives of this research are to:

• Characterize and compare the communication patterns generated by different deep
learning models during distributed training.

• Identify performance bottlenecks and inefficiencies in network communication across
hardware platforms.

• Evaluate the impact of different parallelization strategies on communication over-
head.

Our results reveal significant differences in communication efficiency between hardware
platforms and parallelization strategies. We find that while NVIDIA DGX-2 systems excel
in raw computational performance, TPUs demonstrate superior communication efficiency,
particularly for larger models. Furthermore, our layer-by-layer analysis identifies fully-
connected layers as critical bottlenecks in the communication pipeline, especially when
using model parallelism.

These findings have important implications for the design and optimization of dis-
tributed training systems. By understanding the specific communication requirements of
different models and hardware platforms, researchers can make more informed decisions
about resource allocation, parallelization strategy, and network topology, potentially re-
ducing training time and resource utilization for large-scale deep learning workloads.

The remainder of this paper is organized as follows: Section 2 provides background
on distributed parallel training approaches, Section 3 describes the common network
topologies used in distributed training, Section 4 presents the real-world experiments over
Alliance of Canada, Section 5 additionally discuss the simulation results over ASTRA-sim,
and we concluded in Section 6.

2 Distributed Training Approaches
Model parallelism and data parallelism are two primary strategies for distributing the
training of large machine learning models across multiple computing resources, such as
GPUs. These approaches are especially crucial in deep learning, where both the models
and datasets can be extremely large.

2.1 Data Parallelism

In data parallelism, the dataset is split into smaller batches, with each node assigned a
different batch of the training data. Every node will have the same copy of the model
and processes its assigned data independently. Data parallelism is relatively simple to

3

https://www.nvidia.com/en-in/data-center/dgx-2/
https://www.nvidia.com/en-in/data-center/dgx-2/
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
https://en.wikipedia.org/wiki/Tensor_Processing_Unit

2.2 Model Parallelism 2 DISTRIBUTED TRAINING APPROACHES

implement and is effective when the model fits entirely within a single device’s memory.
The training process generally involves the following steps:

1. Each GPU or device loads an identical copy of the model.

2. The dataset is divided into smaller batches, with each device receiving a different
portion.

3. Each device performs forward and backward passes independently on its own data
batch.

4. The gradients computed by each device are then synchronized using techniques like
all-reduce to ensure consistency.

5. Finally, each device updates its model weights using the aggregated gradients.

Data parallelism is well-suited for training on large datasets and scales efficiently with
the number of data samples. However, the communication overhead in data parallelism
arises during gradient synchronization, especially when the model grows.

2.2 Model Parallelism

In model parallelism, the model is split across multiple devices, and each device is respon-
sible for a different portion of the model, such as specific layers or sets of neurons. Unlike
data parallelism, where all devices work simultaneously on different data batches, model
parallelism processes data sequentially as it flows through the split model components.
Communication occurs as intermediate outputs (activations) are passed between devices.
The training process in model parallelism generally follows these steps:

1. The model is divided across multiple devices, either by assigning entire layers to
different GPUs or by splitting individual tensors (tensor sharding).

2. Each device receives the same input data or intermediate activations from the pre-
vious stage.

3. Computation progresses sequentially through the partitioned model, with activa-
tions passed between devices.

4. During the backward pass, gradients are similarly communicated across devices to
complete the update process.

5. Each device updates only its own portion of the model parameters.

Model parallelism is especially valuable when the model is too large to fit into the
memory of a single GPU. However, its performance can be limited by the communication
overhead required to transfer data between different devices.

2.3 Hybrid Approaches

In practice, many systems use hybrid approaches combining both methods, particularly
for extremely large models like GPT-3. This hybrid approach helps make better use of
memory and reduces communication time, making it easier to train very large models
efficiently.

4

3 NETWORK TOPOLOGIES FOR DISTRIBUTED TRAINING

3 Network Topologies for Distributed Training
The efficiency of distributed training depends significantly on the network topology con-
necting the compute nodes. There are three common topologies: ring, fully connected,
and switch-based architectures.

3.1 Ring

In a ring topology, compute nodes are arranged in a closed-loop configuration, where each
node is connected to exactly two neighboring nodes—one on either side. Data flows in
a unidirectional manner around the ring, enabling sequential communication from node
to node. This topology is relatively simple to implement and requires minimal cabling
or interconnect infrastructure, making it an attractive choice for environments with con-
strained resources. The ring topology presents several advantages. It is cost-effective, as

Figure 1: Ring

it requires fewer interconnects compared to more complex topologies such as fully con-
nected networks. Its structural simplicity facilitates ease of deployment and maintenance,
particularly in environments with constrained resources. Additionally, the communication
paths are fixed, resulting in predictable and deterministic latency. However, this topology
also introduces certain limitations. A single node or link failure can disrupt the entire
network, scalability is limited as adding nodes requires reconfiguring the ring, and sequen-
tial communication can lead to performance bottlenecks in larger systems. Despite these
limitations, ring topology is well-suited for small-scale distributed systems with limited
resources, where simplicity and cost-effectiveness are more important than achieving high
throughput.

3.2 Fully Connected

In a fully connected topology, each compute node is directly linked to every other node in
the system, forming a mesh-like network. This architecture enables simultaneous, point-
to-point communication between any pair of nodes without relying on intermediaries,
ensuring efficient and direct data exchange.

The fully connected topology offers several notable advantages. Its high reliability
stems from the presence of redundant communication paths, which reduce the likelihood

5

3.3 Switch 3 NETWORK TOPOLOGIES FOR DISTRIBUTED TRAINING

Figure 2: Fully Connected

of network failure. The direct connections between nodes contribute to low communica-
tion latency and support high throughput, as multiple data transfers can occur in parallel.
However, these benefits come at a significant cost. The topology requires O(N2) inter-
connects, making it expensive and impractical for large-scale systems. Additionally, the
complexity of configuring and maintaining such a dense network grows rapidly with the
number of nodes, posing significant management challenges. Scalability is also limited, as
adding new nodes results in an exponential increase in interconnect requirements. Conse-
quently, fully connected topologies are most appropriate for high-performance computing
(HPC) clusters where maximum throughput is essential, or for small-scale systems where
budget and resource constraints are minimal.

3.3 Switch

Switch-based architectures utilize dedicated switches or routers to interconnect compute
nodes. In this configuration, nodes do not communicate directly with each other but
instead route data through the switch, which manages and dynamically directs commu-
nication paths. This topology offers a high degree of flexibility and scalability, making
it suitable for a wide range of system sizes and configurations. Switch-based topologies

Figure 3: Switch

provide several advantages. They are highly scalable, allowing for the seamless addition
of nodes or switches without major architectural changes. Modern switches support high-
speed, low-latency communication, contributing to efficient data transfer. Additionally,

6

4 REAL-WORLD EXPERIMENTS

these architectures offer fault tolerance through redundant paths and failover mechanisms,
enhancing system reliability. From a cost perspective, switch-based networks are generally
more economical than fully connected topologies, especially in large-scale deployments.
However, there are trade-offs. Performance heavily depends on the capabilities of the
switches; inadequate bandwidth or suboptimal configuration can lead to communication
bottlenecks. Network design and tuning can also be complex, requiring careful planning
to ensure balanced load distribution and minimal latency. Moreover, if redundancy is not
properly implemented, switch failure can become a single point of failure. Switch-based
topologies are well-suited for large-scale distributed training environments, such as deep
learning clusters, and cloud-based infrastructures where dynamic scalability and efficient
resource utilization are critical.

4 Real-world Experiments
To gain insight into the real-world distributed training traffic patterns, I began by ex-
ploring running distributed training jobs in a real-world platform. Since UVic provides
students with the support of computing resource with the platform called Alliance of
Canada, I chose it as my experimental platform and successfully ran the distributed
training jobs on it in the end.

4.1 Alliance of Canada

The Alliance operates several large supercomputing clusters across Canada – including
general-purpose heterogeneous systems like Cedar, Graham, Béluga, and Narval. The
clusters are built with fast inter-node interconnects (typically InfiniBand) and uses a
Mellanox HDR InfiniBand network (200 Gb/s) to link all nodes. Researchers access these
resources through the Slurm workload manager, submitting jobs that request a number
of nodes/GPUs and time; the Slurm 1 scheduler then allocates the specified GPUs and
coordinates job launch across the cluster. This allows distributed training scripts to run in
parallel on multiple GPUs (potentially across several nodes) under a unified job allocation.

4.2 Distributed Training on Alliance HPC Clusters

We conducted distributed training experiments using PyTorch’s DistributedDataParallel
(DDP) framework on the Alliance of Canada HPC clusters. The training script leverages
NVIDIA’s NCCL backend for efficient inter-process GPU communication. Initially, each
training process calculates its unique global rank and joins the distributed environment
using torch.distributed.init_process_group. Training processes are launched using
PyTorch’s torch.multiprocessing.spawn utility, and GPUs are assigned based on each
process’s local rank.

In our training stage, we use Fashion-MNIST 2 as the dataset for distributed training.
Since we are doing the data parallelism, the dataset is loaded and distributed across
GPUs using DistributedSampler, ensuring that each GPU processes distinct subsets of
data. A WideResNet architecture—consisting of several convolutional and pooling layers

1https://docs.alliancecan.ca/wiki/Using_GPUs_with_Slurm
2https://www.kaggle.com/datasets/zalando-research/fashionmnist

7

4.3 Numerical Results 4 REAL-WORLD EXPERIMENTS

with synchronized batch normalization—is employed as the training model. The model
is wrapped with PyTorch’s DDP to facilitate automatic gradient synchronization across
GPUs.

Synchronization points (dist.barrier) are strategically placed to coordinate epochs
across GPUs, while performance metrics, including epoch timings and throughput, are
aggregated using collective operations like torch.distributed.reduce. Validation accu-
racy and loss are averaged globally across processes using torch.distributed.all_reduce.

After submitting the training job request, I was assigned to the Cedar cluster with the
allocation of 4 NVIDIA V100 GPUs distributed across 2 nodes in which nodes connected
via InfiniBand EDR (100 Gbps).

4.3 Numerical Results

The experiments on the Alliance of Canada platform using PyTorch Distributed Data
Parallel (DDP) with a Wide ResNet model on the Fashion MNIST dataset produced the
following results:
Epoch 1 Summary:

• Time Taken: 81.000 seconds

• Throughput: 740.74 images/second

• Validation Loss: 0.354

• Validation Accuracy: 87.8%

• Communication Time for AllReduce (gradient synchronization): 0.006016 seconds

Epoch 2 Summary:

• Time Taken: 78.931 seconds

• Throughput: 760.16 images/second

• Validation Loss: 0.249

• Validation Accuracy: 91.0% (exceeding the target accuracy of 0.85)

• Communication Time for AllReduce: 0.007944 seconds

These results demonstrate that in a real-world setting with a moderate-sized model
and a well-optimized framework like PyTorch DDP, communication overhead constitutes
a very small fraction of the total training time (less than 0.01%). This efficiency is partly
due to the high-speed InfiniBand interconnect and the relatively small size of the Wide
ResNet model. However, these measurements only capture the synchronization time for
gradient all-reduce operations and do not provide visibility into the detailed network traffic
patterns. For this reason, I turned to ASTRA-sim for more comprehensive analysis.

8

5 ASTRA-SIM SIMULATOR

5 ASTRA-sim Simulator
While I can run my distributed training script on the Alliance Canada clusters, I was facing
challenges in developing a method to capture and analyze network performance data.
This step is crucial for understanding the traffic patterns and communication overhead in
distributed deep learning training.

To cope with the above challenge, I looked into alternative tools and I found the simu-
lator ASTRA-sim (https://github.com/astra-sim/astra-sim), which is a distributed
machine learning system simulator developed by Intel, Meta, and Georgia Tech. The
overview of ASTRA-sim is given in Fig. 4.

Figure 4: The overview of ASTRA-sim

It is designed to model the complex co-design space of distributed machine learning
(ML) platforms, which involve interactions between DNN model architecture, paralleliza-
tion strategy, scheduling strategy, collective communication algorithm, network topology,
and accelerator endpoints. ASTRA-sim enables researchers to systematically study bot-
tlenecks and evaluate futuristic systems at both software and hardware levels for scaling
distributed ML.

The integration of the Network Simulator in ASTRA-sim enables us to easily analyze
network performance. More importantly, it allows us to customize the topology for the dis-
tributed training such as parameter servers, all-connected, ring, etc. This salient feature
perfectly matches with my initial goal of traffic pattern study with varying topologies.

5.1 Experimental Settings

5.1.1 System settings:

ASTRA-sim is designed to represent real-world distributed training systems with high
fidelity. It provides the parameters of the existing commercialized frameworks:

• NVIDIA DGX-2

• Google Cloud TPU v2

9

https://github.com/astra-sim/astra-sim

5.1 Experimental Settings 5 ASTRA-SIM SIMULATOR

NVIDIA DGX-2 consists of 16 nodes each with 16 V100 GPUs (256 GPUs total). In a
DGX-2, GPUs within a node are fully interconnected via NVSwitch (NVLink) and nodes
are linked by InfiniBand. ASTRA-sim encodes this as a two-dimensional (2D) network:
one dimension represents the intra-node fabric and the second represents the inter-node
network. In the DGX-2 case, the first dimension models the NVSwitch connectivity (each
GPU has 6 NVLink connections at 25 GB/s each) and the second dimension models
the InfiniBand switch connecting the 16 nodes (each with a 100 GbE link, 6.25 GB/s).
Similarly, to simulate a Google Cloud TPU v2 pod, which uses a 16×16 2D torus of
TPUs (256 chips total) connected by a custom inter-core interconnect (ICI) of 496 Gbps
(62 GB/s) per link, ASTRA-sim defines a 2D Ring topology. Each TPU in the simulation
is connected in a torus arrangement with two links in each dimension (horizontal and
vertical ring), each link having the specified bandwidth (62 GB/s) and latency (e.g. 500
ns). In general, the simulator’s network configuration file (.json) explicitly lists: the
number of network dimensions, the connectivity type per dimension (e.g. Switch, Ring,
Torus, etc.), the number of units in each dimension, and the link latency and bandwidth
for each level.

5.1.2 Workload generation:

To simulate a distributed deep learning workload, we need to create the workload configu-
ration (often a .txt file) that lists the sequence of operations (layers and communications)
in one iteration of training and input the file into ASTRA-sim. Essentially, the work-
load file is a structured list of the DNN’s layers along with the associated computation
and communication requirements. Each layer entry can include several key parameters,
typically covering:

• Compute Time: an estimate of how long the forward or backward computation for
that layer takes on the given hardware (in cycles or nanoseconds). This is derived
from the number of operations and the device’s performance. For example, the first
convolutional layer of VGG-16 3 requires 173 million operations, which on a TPUv2
(46 TFLOPS peak) was estimated to take about 3429 ns. If we were simulating the
same layer on an NVIDIA V100 GPU (112 TFLOPS), the compute time would be
scaled down to 41% (since V100 is 2.43× faster).

• Communication Type: the kind of communication that occurs after this layer’s
computation, if any. This could be NONE (no communication for that phase) for
most forward passes, or a collective operation like ALLREDUCE, ALLGATHER,
REDUCE-SCATTER, etc.

• Communication Size: the amount of data to be communicated. This typically
corresponds to the size of the layer’s parameters or activations that need to be
exchanged. In the VGG-16 example, the first conv layer has 1,792 parameters
(weights + bias), which is about 3.5 KB of data (assuming 2 bytes per parameter). In
a data-parallel setting with gradient averaging, each worker will need to send/receive
that 3.5 KB in an All-Reduce for that layer.

In our experiments, we generate the workload configuration files for the following three
models:

3https://lekhuyen.medium.com/an-overview-of-vgg16-and-nin-models-96e4bf398484

10

5.2 Simulation Results 5 ASTRA-SIM SIMULATOR

1. VGG16: A convolutional neural network (CNN) architecture developed by the Vi-
sual Geometry Group (VGG) at the University of Oxford. It consists of 16 layers,
including 13 convolutional layers and 3 fully connected layers. The architecture
features a stack of convolutional layers followed by max-pooling layers, with pro-
gressively increasing depth.

2. GPT-3: Generative Pre-trained Transformer 3(GPT-3) is a cutting-edge language
model developed by OpenAI. It is an autoregressive transformer model featuring
175 billion parameters, making it one of the largest and most powerful language
models to date. Due to the large size of the real GPT-3, we only select the first 3
transformer layers to generate the workload.

3. ResNet50: It belongs to the Residual Network (ResNet) family, characterized by its
unique use of residual or "skip" connections. These connections allow the model to
bypass certain layers, thereby addressing the vanishing gradient problem commonly
encountered in very deep networks. ResNet-50 specifically consists of 50 layers,
including convolutional layers grouped into four primary stages, each comprising
residual blocks.

5.2 Simulation Results

We present a comparative analysis of runtime performance for three deep learning models
(VGG16, ResNet50, and GPT-3) executed on two hardware platforms (NVIDIA DGX2
and Google Cloud TPU). The results are organized by model, and within each model we
examine individual performance metrics – compute time per layer and communication
time per layer.

5.2.1 VGG16

For the VGG16 model, the data-parallel communication time (DPCommsTime) is negli-
gible compared to the model-parallel communication time (MPCommsTime). As shown in
Fig. 5, on the DGX2 platform, VGG16’s DPCommsTime is only approximately 48,600µs,
whereas its MPCommsTime is around 4,832,700µs, indicating roughly a 100-fold increase
when using model parallelism. A similar trend is observed on the TPU: DPCommsTime
is about 94,700µs compared to an MPCommsTime of roughly 3,562,700µs (approximately
37 times greater). This demonstrates that for VGG16, model-parallel communication
overhead significantly exceeds data-parallel gradient synchronization cost. TPU’s high-
speed interconnect slightly reduces MP communication overhead (around 26% lower than
DGX2), though its DP overhead is marginally higher.

Fig. 6 illustrates per-layer compute times for each VGG16 layer on DGX2 (blue
bars) versus TPU (orange bars). DGX2 executes convolutional layers significantly faster
than TPU, particularly notable in deeper layers. For instance, in the last convolutional
block (e.g., block5_conv3), DGX2’s compute time is approximately 80,000µs compared
to TPU’s 220,000µs, nearly three times longer. Final fully-connected layers (fc1, fc2)
exhibit relatively small compute times on both platforms, underscoring DGX2’s superior
raw compute efficiency for convolution-heavy workloads.

Communication time per layer for VGG16, depicted in Fig. 7, is minimal initially
but escalates significantly in deeper layers, especially in the fully-connected layers fc1

11

5.2 Simulation Results 5 ASTRA-SIM SIMULATOR

Figure 5: DPCommsTime vs MPCommsTime

and fc2. The transition from convolutional blocks to large fully-connected layers incurs
substantial data exchanges in model-parallel setups, thus making communication overhead
dominant in these final layers.

Figure 6: VGG16 Compute Time per Layer

5.2.2 ResNet50

The ResNet50 model exhibits similar trends between DP and MP communication over-
heads (Fig. 8). On DGX2, DPCommsTime is approximately 53,700µs, while MPCommsTime
rises significantly to around 3,223,100µs (roughly 60 times higher). TPU shows a simi-
lar increase, with DP at about 89,800µs and MP at approximately 3,960,900µs (about
44 times higher). Notably, the MP communication cost for ResNet50 is lower than
VGG16’s fully-connected overheads due to smaller activation sizes and final layer dimen-
sions. DGX2’s NVLink/NVSwitch interconnect manages MP synchronization slightly
faster than TPU in this case.

Fig. 9 displays per-layer compute times for ResNet50, confirming DGX2’s consistent
advantage over TPU in nearly every convolution layer. Communication time per layer
for ResNet50, illustrated in Fig. 10, gradually increases with network depth, becoming
prominent in mid to deep layers.

12

5.2 Simulation Results 5 ASTRA-SIM SIMULATOR

Figure 7: VGG16 Communication Time per Layer

Figure 8: DPCommsTime vs MPCommsTime for RestNet50

Fig. 11 further contrasts compute versus communication times per layer, highlighting
that initially, compute dominates (green segments), but in deeper layers, communication
(red segments) overtakes compute. This trend is consistent across both platforms, clearly
illustrating the eventual dominance of communication overhead in ResNet50.

5.2.3 GPT-3

The GPT-3 model shows a substantial disparity between DP and MP communication
times, as demonstrated in Fig. 12. TPU notably excels in data-parallel communica-
tion, significantly outperforming DGX2 by quickly executing gradient synchronization
across devices. However, in model-parallel communication, TPU incurs slightly higher
overhead (around 250 seconds) compared to DGX2’s 206 seconds. This difference likely
arises from the parallelization strategy—GPT-3 might be distributed across more TPU
cores, increasing the number of communication rounds across the TPU pod network,
whereas DGX2 potentially used fewer GPUs with dense NVLink connectivity. Thus, par-
allelization strategies and hardware topology critically influence GPT-3’s communication
performance.

13

5.3 Overall Insights 5 ASTRA-SIM SIMULATOR

Figure 9: RestNet50 Compute Time per Layer

Figure 10: RestNet50 Communication Time per Layer

5.3 Overall Insights

Key insights from the analysis include:

• MP communication dominates runtime in large models (GPT-3, Transformer).

• DP communication is consistently lower than MP.

• DGX2 excels at computation, while TPU shows strength in handling large-scale MP
communications.

• Minimizing communication or overlapping it effectively with computation signifi-
cantly reduces overall runtime.

In conclusion, optimal distributed training performance requires balancing efficient
computational power and high-speed interconnects, highlighting the critical role of hard-
ware architecture and communication strategy in scalable deep learning.

14

6 CONCLUSIONS AND FUTURE WORK

Figure 11: RestNet50 Communication Time VS Compute Time per Layer

Figure 12: DPCommsTime vs MPCommsTime for GPT3

6 Conclusions and Future Work

6.1 Conclusion

Limitations

Several limitations of this project should be noted:

1. Although ASTRA-sim offers valuable insights into communication patterns, it relies
on simplified hardware models that may not fully reflect real-world performance.

2. The analysis was limited to four model architectures, VGG16, GPT-3, RestNet50
and Transformer, which may restrict the generalizability of the findings to other
deep learning models.

3. The fast-paced development of hardware platforms suggests that newer GPU and
TPU architectures may exhibit communication behaviors that differ from those
captured in this project.

15

6.2 Future Work REFERENCES

6.2 Future Work

To enhance the scope and impact of this study, the following directions will be pursued
in future phases of the project:

1. Expansion of Model Architecture Coverage

The analysis will be extended to include a wider variety of deep neural network
(DNN) architectures. This includes more transformer-based models (e.g., Vision
Transformers, NLP Transformers), recurrent neural networks (RNNs), and hybrid
models that integrate convolutional, attention, or memory-augmented components.
The goal is to characterize architecture-specific communication patterns—such as
gradient synchronization frequency, parameter aggregation strategies, and scalabil-
ity across topologies—and to identify how these differences influence distributed
training performance.

2. Enhanced Network and Hardware Metric Collection

The data collection framework will be expanded to capture a more comprehensive
set of system-level metrics, with emphasis on:

• Bandwidth Utilization: Analyzing how different network topologies (e.g., ring,
mesh, hierarchical) affect throughput and latency during collective operations
like all-reduce or parameter server communication.

• Hardware Resource Utilization: Monitoring temporal patterns in GPU/CPU
memory usage, cache activity, and compute-idle periods to identify correlations
between hardware contention and communication inefficiencies.

• Batch Size Sensitivity: Conducting controlled experiments with varying batch
sizes to assess their impact on communication overhead in both synchronous
and asynchronous training scenarios.

3. Deployment of Real-Time Distributed Training Experiments

To validate simulation-based findings under real-world conditions, distributed train-
ing jobs will be executed on heterogeneous computing environments, including multi-
node GPU clusters and cloud-based platforms. Real-time telemetry tools—such as
NVIDIA Nsight Systems and distributed tracing frameworks—will be used to col-
lect detailed performance traces, including synchronization delays and hardware
utilization metrics. Insights gained from these experiments will support the devel-
opment of adaptive optimization techniques, such as topology-aware job scheduling
and dynamic batch size adjustment.

Collectively, these efforts aim to provide a deeper understanding of the communication-
performance trade-offs in distributed deep learning and to inform the design of scalable,
topology-aware training strategies.

References
[1] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences,”

Minds and Machines, vol. 30, pp. 681–694, 2020.

16

REFERENCES REFERENCES

[2] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad: Ternary
gradients to reduce communication in distributed deep learning,” Advances in neural
information processing systems, vol. 30, 2017.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang et al., “Large scale distributed deep networks,” Advances in neural
information processing systems, vol. 25, 2012.

[4] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in
tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[5] S. Rajasekaran, M. Ghobadi, and A. Akella, “{CASSINI}:{Network-Aware} job
scheduling in machine learning clusters,” in 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), 2024, pp. 1403–1420.

[6] Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, “Dgcl: An efficient communi-
cation library for distributed gnn training,” in Proceedings of the Sixteenth European
Conference on Computer Systems, 2021, pp. 130–144.

[7] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating distributed cnn training by
network-level flow scheduling,” in IEEE INFOCOM 2020-IEEE Conference on Com-
puter Communications. IEEE, 2020, pp. 1678–1687.

17

	Introduction
	Distributed Training Approaches
	Data Parallelism
	Model Parallelism
	Hybrid Approaches

	Network Topologies for Distributed Training
	Ring
	Fully Connected
	Switch

	Real-world Experiments
	Alliance of Canada
	Distributed Training on Alliance HPC Clusters
	Numerical Results

	ASTRA-sim Simulator
	Experimental Settings
	System settings:
	Workload generation:

	Simulation Results
	VGG16
	ResNet50
	GPT-3

	Overall Insights

	Conclusions and Future Work
	Conclusion
	Future Work

