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1 Literature Review:

Read and analyzed several key papers related to distributed deep learning and network-aware optimiza-
tion:
According to CASSINI[1], it introduce a network-aware job scheduling system specifically designed to
optimize the performance of machine learning (ML) workloads in large-scale distributed clusters. Their
approach consider interleaving the communication patterns of different training jobs when placing them
on servers. CASSINI is an inter-job communication scheduler that aims to reuse different network links
over time by assigning a time-dimension offset to each job. However, dynamic networks and jobs can
affect the actual traffic pattern of each job. Thus, merely setting a time offset for each job cannot
eliminate communication contention among jobs. Crux [2] proposes the concept of GPU intensity, and
reduces the GPU utilization problem to a flow optimization problem. To approximate the optimal flow
scheduling in real-world multi-tenant GPU clusters, Crux proposes GPU intensity-based path selection,
priority assignment, and priority compression for DLT jobs.

In the paper PipeDream[3], they propose pipeline parallelism, a combination of data and model
parallelism with pipelining, which showed pipelining can be used to accelerate the DNN training. [4] de-
signed a new aggregation hardware accelerator to support multiple active training jobs and demonstrated
the benefits of in-network aggregation extend to non-aggregation traffic. In order to fully overlap gra-
dient synchronization communication with computation with minimal staleness, SAPipe [5] introduces
partial staleness, which restricts the number of layers learned with stale gradients. To further mitigate
convergence issues caused by staleness, SAPipe adopts weight prediction and delay compensation.

In this paper MLTCP[6], they introduces a novel approach to leverage congestion control algorithms
to approximate interleaved flow schedules for DNN flows in a distributed manner. The key idea is to
dynamically adjust the flow congestion window (or sending rate) to induce a sliding effect so that the
DNN jobs automatically converge to approximately optimal interleaving. [7] demonstrates that for a
specific combination of jobs, introducing unfairness creates a desirable side effect that improves the
training time of all jobs competing for bandwidth. A recent advancement in this domain is TopoopT
[8] , which introduces a co-optimization framework for network topology and parallelization strategies in
distributed training jobs.

These papers provided insights into communication bottlenecks, scheduling strategies, and optimiza-
tion techniques for distributed deep learning.

2 Tool Exploration:

Discovered ASTRA-SIM (http://github.com/astra-sim/astra-sim), which is an open-source simula-
tion methodology for modeling distributed training systems. ASTRA-SIM can model various paralleliza-
tion strategies and the overlapping of compute with comm kernels. Additionally, its network back-end
can simulate the comm operations in detail.

ASTRA-SIM supports:

• Modeling of various parallelization strategies (e.g., data parallelism, model parallelism).

• Simulation of computation-communication overlap.

• Evaluation of network topologies and communication kernels.

This tool is highly relevant for simulating and analyzing traffic patterns in distributed deep learning
systems.
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Exploring Compute Canada:

Identified Compute Canada as a potential platform for capturing real-world network traffic during dis-
tributed training. From my initial understanding, Compute Canada allows for network traffic capture
with code, which could complement the simulations done in ASTRA-SIM. Currently researching how to
set up and use Compute Canada for this purpose.

3 Next Steps Planning

Setting Up ASTRA-SIM:
Installed and configured ASTRA-SIM on my local machine. Explored its documentation and exam-

ple use cases to understand its capabilities. Started simulating basic distributed training scenarios to
familiarize myself with the tool.
Compute Canada Set up:

Continue exploring Compute Canada’s capabilities for network traffic capture. Set up a distributed
training job on Compute Canada and capture network traffic using available tools.
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