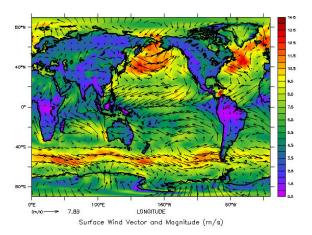
A Whirlwind of Mathematics

Etienne Leclerc

University of Victoria

Introduction

A fluid flow can be described by its velocity field $\vec{v} = (u, v, w)$, a 3-dimensional vector field which describes the velocity of the fluid, at each point in space and instant in time.



$\nabla \cdot \vec{v} = 0$ $\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$

$\nabla \cdot \vec{v} = 0$ $\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$

• The divergence $\partial_x u + \partial_y v + \partial_z w$ of the velocity field

$$abla \cdot ec{m{v}} = 0$$
 $rac{Dec{m{v}}}{Dt} = -
abla m{p} +
u \Delta ec{m{v}} + ec{F}$

- ▶ The divergence $\partial_x u + \partial_y v + \partial_z w$ of the velocity field
- In general, the sign of ∇ · v < 0 at a point determines whether the point is (on average) sucking in particles, or pushing them away

$$egin{array}{rcl}
abla \cdot ec{m{v}} &= 0 \ rac{Dec{m{v}}}{Dt} &= -
abla m{p} +
u \Delta ec{m{v}} + ec{m{F}} \end{array}$$

- The divergence $\partial_x u + \partial_y v + \partial_z w$ of the velocity field
- ▶ In general, the sign of $\nabla \cdot \vec{v} < 0$ at a point determines whether the point is (on average) sucking in particles, or pushing them away
- ▶ $\nabla \cdot \vec{v} = 0$ is called the incompressibility condition; it enforces the conservation of mass

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

The operator D/Dt, not to be confused with d/dt, is called the material derivative

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

The operator D/Dt, not to be confused with d/dt, is called the material derivative

• If f is a scalar-valued function, we define $\frac{Df}{Dt} = \partial_t f + \vec{v} \cdot \nabla f$; this is the change in f as it is transported by the fluid

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

The operator D/Dt, not to be confused with d/dt, is called the material derivative

• If f is a scalar-valued function, we define $\frac{Df}{Dt} = \partial_t f + \vec{v} \cdot \nabla f$; this is the change in f as it is transported by the fluid

• We define the material derivative of a vector-valued function coordinatewise; in particular, $\frac{D\vec{v}}{Dt} = \left(\frac{Du}{Dt}, \frac{Dv}{Dt}, \frac{Dw}{Dt}\right)$

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

The pressure p is a fourth variable to be solved for in the Navier-Stokes equations

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

- The pressure p is a fourth variable to be solved for in the Navier-Stokes equations
- ► The gradient ∇p is the direction of fastest increase in pressure, and large magnitudes of ∇p correspond to sharper increases in pressure

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

- The pressure p is a fourth variable to be solved for in the Navier-Stokes equations
- ► The gradient ∇p is the direction of fastest increase in pressure, and large magnitudes of ∇p correspond to sharper increases in pressure
- ► Therefore, the equation $\frac{Dv}{Dt} = -\nabla p + [\text{stuff}]$ indicates that fluid particles accelerate away from regions of high pressure

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

'Recall' (or learn!) the heat equation ∂_t T = ΔT, where Δ is the Laplacian ∂_{xx} T + ∂_{yy} T + ∂_{zz} T

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

- 'Recall' (or learn!) the heat equation ∂_t T = ΔT, where Δ is the Laplacian ∂_{xx} T + ∂_{yy} T + ∂_{zz} T
- Viscosity diffuses velocity like heat, and the coefficient of viscosity v determines the extent to which this occurs

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

- 'Recall' (or learn!) the heat equation ∂_t T = ΔT, where Δ is the Laplacian ∂_{xx} T + ∂_{yy} T + ∂_{zz} T
- Viscosity diffuses velocity like heat, and the coefficient of viscosity v determines the extent to which this occurs
- The Laplacian applies to \vec{v} coordinatewise: $\Delta \vec{v} = (\Delta u, \Delta v, \Delta w)$

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

The external-, or body-forcing term

$$\nabla \cdot \vec{v} = 0$$
$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v} + \vec{F}$$

- The external-, or body-forcing term
- Gravitational effects, the Coriolis force, thermodynamic effects

$$abla \cdot ec{v} = 0$$

 $\frac{Dec{v}}{Dt} = -\nabla p + \nu \Delta ec{v} + ec{F}$

- The external-, or body-forcing term
- Gravitational effects, the Coriolis force, thermodynamic effects
- We will, as will most textbooks, set $F \equiv 0$

Zoom in on the momentum equation:

The equality in

$$rac{Dec{v}}{Dt} = -
abla p +
u \Delta ec{v}$$

is actually an equality of 3-dimensional vectors. It therefore forms three equalities of scalar-valued functions:

Zoom in on the momentum equation:

The equality in

$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v}$$

is actually an equality of 3-dimensional vectors. It therefore forms three equalities of scalar-valued functions:

$$\frac{Du}{Dt} = -\partial_x p + \nu \Delta u$$
$$\frac{Dv}{Dt} = -\partial_y p + \nu \Delta v$$
$$\frac{Dw}{Dt} = -\partial_z p + \nu \Delta w$$

Zoom in on the momentum equation:

The equality in

$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v}$$

is actually an equality of 3-dimensional vectors. It therefore forms three equalities of scalar-valued functions:

$$\frac{Du}{Dt} = -\partial_x p + \nu \Delta u$$
$$\frac{Dv}{Dt} = -\partial_y p + \nu \Delta v$$
$$\frac{Dw}{Dt} = -\partial_z p + \nu \Delta w$$

If we assume that all the action is happening on a 2-dimensional plane (i.e. $w \equiv 0$ and ∂_z [anything] = 0), then the third equation vanishes identically, and we are left with only two momentum equations.

2-dimensional simulation:

2-dimensional WebGL Navier-Stokes simulation

Define the vorticity $\vec{\omega} = \nabla \times \vec{v}$. Taking the curl of both sides of

$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v}$$

Define the vorticity $\vec{\omega} = \nabla \times \vec{v}$. Taking the curl of both sides of

$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v}$$

gives

$$abla imes \left(\frac{D \vec{v}}{D t} \right) = \nabla \times \left(-\nabla p + \nu \Delta \vec{v} \right)$$

Define the vorticity $\vec{\omega} = \nabla \times \vec{v}$. Taking the curl of both sides of

$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v}$$

gives

$$abla imes \left(rac{D ec v}{D t}
ight) =
abla imes \left(-
abla p +
u \Delta ec v
ight)$$

and this can be checked to be equivalent to the vorticity equation

$$\frac{D\vec{\omega}}{Dt} = (\vec{\omega} \cdot \nabla)\vec{v} + \nu\Delta\vec{\omega}$$

Define the vorticity $\vec{\omega} = \nabla \times \vec{v}$. Taking the curl of both sides of

$$\frac{D\vec{v}}{Dt} = -\nabla p + \nu \Delta \vec{v}$$

gives

$$abla imes \left(rac{D ec v}{D t}
ight) =
abla imes \left(-
abla p +
u \Delta ec v
ight)$$

and this can be checked to be equivalent to the vorticity equation

$$\frac{D\vec{\omega}}{Dt} = (\vec{\omega} \cdot \nabla)\vec{v} + \nu\Delta\vec{\omega}$$

The first term on the right is the vortex-stretching term.

In 2 dimensions, $\vec{\omega} = (0, 0, \partial_x v - \partial_y u)$. Thus, the first two coordinates of the vorticity equation drop out.

In 2 dimensions, $\vec{\omega} = (0, 0, \partial_x v - \partial_y u)$. Thus, the first two coordinates of the vorticity equation drop out.

If we let $\omega = \vec{\omega}_3 = \partial_x v - \partial_y u$, the remaining coordinate now looks like

$$\frac{D\omega}{Dt} = (0,0,\omega) \cdot \nabla w + \nu \Delta \omega$$

In 2 dimensions, $\vec{\omega} = (0, 0, \partial_x v - \partial_y u)$. Thus, the first two coordinates of the vorticity equation drop out.

If we let $\omega = \vec{\omega}_3 = \partial_x v - \partial_y u$, the remaining coordinate now looks like

$$rac{D\omega}{Dt} = (0,0,\omega) \cdot
abla w +
u \Delta \omega$$

Since $w \equiv 0$, the vortex-stretching term vanishes, and we are left with

$$\frac{D\omega}{Dt} = \nu\Delta\omega$$

In 2 dimensions, $\vec{\omega} = (0, 0, \partial_x v - \partial_y u)$. Thus, the first two coordinates of the vorticity equation drop out.

If we let $\omega = \vec{\omega}_3 = \partial_x v - \partial_y u$, the remaining coordinate now looks like

$$rac{D\omega}{Dt} = (0,0,\omega) \cdot
abla w +
u \Delta \omega$$

Since $w \equiv 0$, the vortex-stretching term vanishes, and we are left with

$$\frac{D\omega}{Dt} = \nu\Delta\omega$$

The (comparative) simplicity of this equation indicates that we can expect even more complicated behavior in 3-dimensions.

3-dimensional examples:

Burgers' vortex

3blue1brown's turbulent vortices

Vortex tubes:

A vortex line is an integral curve of the vorticity field (it is tangent to the vorticity field at each point).

Vortex tubes:

A vortex line is an integral curve of the vorticity field (it is tangent to the vorticity field at each point).

A vortex tube is a 'curvy cylinder' made up of vortex lines which have been extended as far as possible.

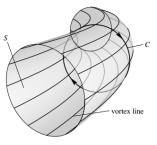
Vortex tubes:

A vortex line is an integral curve of the vorticity field (it is tangent to the vorticity field at each point).

A vortex tube is a 'curvy cylinder' made up of vortex lines which have been extended as far as possible.

If C is a closed curve, then define the circulation

$$\Gamma_C = \oint_C \vec{v} \cdot d\vec{r}.$$



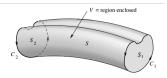
Helmholtz' theorem:

Theorem If C_1 and C_2 are curves oriented the same way about a vortex tube, then $\Gamma_{C_1} = \Gamma_{C_2}$.

Helmholtz' theorem:

Theorem

If C_1 and C_2 are curves oriented the same way about a vortex tube, then $\Gamma_{C_1} = \Gamma_{C_2}$.

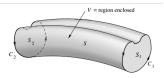


Proof. Let C_1 and C_2 be oriented as in the figure.

Helmholtz' theorem:

Theorem

If C_1 and C_2 are curves oriented the same way about a vortex tube, then $\Gamma_{C_1} = \Gamma_{C_2}$.



Proof.

Let C_1 and C_2 be oriented as in the figure. The outward flux of vorticity through the enclosed region V is

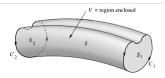
$$\iint_{S\cup S_1\cup S_2} \vec{\omega} \cdot \vec{n} dA = \iint_{S} \vec{\omega} \cdot \vec{n} dA + \iint_{S_1} \vec{\omega} \cdot \vec{n} dA + \iint_{S_2} \vec{\omega} \cdot \vec{n} dA$$

where \vec{n} is the outward-pointing unit normal to $S \cup S_1 \cup S_2$.

Helmholtz' theorem:

Theorem

If C_1 and C_2 are curves oriented the same way about a vortex tube, then $\Gamma_{C_1} = \Gamma_{C_2}$.



Proof.

Let C_1 and C_2 be oriented as in the figure. The outward flux of vorticity through the enclosed region V is

$$\iint_{S \cup S_1 \cup S_2} \vec{\omega} \cdot \vec{n} dA = \iint_{S} \vec{\omega} \cdot \vec{n} dA + \iint_{S_1} \vec{\omega} \cdot \vec{n} dA + \iint_{S_2} \vec{\omega} \cdot \vec{n} dA$$

where \vec{n} is the outward-pointing unit normal to $S \cup S_1 \cup S_2$. The circulation obeys the right-handed rule w.r.t. the normal of S_1 , and the left-handed rule w.r.t the normal of S_2 .

Proof. By the divergence theorem,

$$\iint_{S\cup S_1\cup S_2} \vec{\omega}\cdot \vec{n} dA = \iiint_V \nabla\cdot \vec{\omega} d\sigma = \iiint_V \nabla\cdot (\nabla\times \vec{v}) d\sigma = 0.$$

Proof.

By the divergence theorem,

$$\iint_{S\cup S_1\cup S_2} \vec{\omega}\cdot \vec{n} dA = \iiint_V \nabla\cdot \vec{\omega} d\sigma = \iiint_V \nabla\cdot (\nabla\times \vec{v}) d\sigma = 0.$$

On the other hand, since S is constructed of vortex lines (integral curves of $\vec{\omega}$), $\vec{\omega}$ is (by definition) everywhere-tangent to S, thus orthogonal to \vec{n} on S.

Proof.

By the divergence theorem,

$$\iint_{S\cup S_1\cup S_2} \vec{\omega}\cdot \vec{n} dA = \iiint_V \nabla\cdot \vec{\omega} d\sigma = \iiint_V \nabla\cdot (\nabla\times \vec{v}) d\sigma = 0.$$

On the other hand, since S is constructed of vortex lines (integral curves of $\vec{\omega}$), $\vec{\omega}$ is (by definition) everywhere-tangent to S, thus orthogonal to \vec{n} on S. Therefore,

$$\iint_{S} \vec{\omega} \cdot \vec{n} dA = 0$$

Proof.

By the divergence theorem,

$$\iint_{S\cup S_1\cup S_2} \vec{\omega}\cdot \vec{n} dA = \iiint_V \nabla \cdot \vec{\omega} d\sigma = \iiint_V \nabla \cdot (\nabla \times \vec{v}) d\sigma = 0.$$

On the other hand, since S is constructed of vortex lines (integral curves of $\vec{\omega}$), $\vec{\omega}$ is (by definition) everywhere-tangent to S, thus orthogonal to \vec{n} on S. Therefore,

$$\iint_{S} \vec{\omega} \cdot \vec{n} dA = 0$$

and

$$\iint_{S\cup S_1\cup S_2} \vec{\omega} \cdot \vec{n} dA = \iint_{S_1} \vec{\omega} \cdot \vec{n} dA + \iint_{S_2} \vec{\omega} \cdot \vec{n} dA.$$

Proof.

Since the boundary C_1 of a surface S_1 is a closed curve and the circulation obeys the right-handed rule with respect to the normal, Stokes' theorem states that

$$\Gamma_{C_1} = \oint_{C_1} \vec{v} \cdot d\vec{r} = \iint_{S_1} (\nabla \times \vec{v}) \cdot \vec{n} dA = \iint_{S_1} \vec{\omega} \cdot \vec{n} dA.$$

Proof.

Since the boundary C_1 of a surface S_1 is a closed curve and the circulation obeys the right-handed rule with respect to the normal, Stokes' theorem states that

$$\Gamma_{C_1} = \oint_{C_1} \vec{v} \cdot d\vec{r} = \iint_{S_1} (\nabla \times \vec{v}) \cdot \vec{n} dA = \iint_{S_1} \vec{\omega} \cdot \vec{n} dA.$$

Similarly, since the circulation about C_2 obeys the left-handed rule,

$$\Gamma_{C_2} = \oint \vec{v} \cdot d\vec{r} = -\iint (\nabla \times \vec{v}) \cdot \vec{n} dA = -\iint \vec{\omega} \cdot \vec{n} dA.$$

Proof.

Since the boundary C_1 of a surface S_1 is a closed curve and the circulation obeys the right-handed rule with respect to the normal, Stokes' theorem states that

$$\Gamma_{C_1} = \oint_{C_1} \vec{v} \cdot d\vec{r} = \iint_{S_1} (\nabla \times \vec{v}) \cdot \vec{n} dA = \iint_{S_1} \vec{\omega} \cdot \vec{n} dA.$$

Similarly, since the circulation about C_2 obeys the left-handed rule,

$$\Gamma_{C_2} = \oint \vec{v} \cdot d\vec{r} = -\iint (\nabla \times \vec{v}) \cdot \vec{n} dA = -\iint \vec{\omega} \cdot \vec{n} dA.$$

Putting this all together,

$$0 = \iint_{S \cup S_1 \cup S_2} \vec{\omega} \cdot \vec{n} dA = \Gamma_{C_1} - \Gamma_{C_2}$$

Corollaries:

Corollary

The strength Γ_C of a vortex tube is well-defined irrespective of C.

Corollaries:

Corollary

The strength Γ_C of a vortex tube is well-defined irrespective of C.

Corollary

This shows that a 'nontrivial' vortex tube of nonzero strength must either take the form of the ring, extend to infinity, or end at the boundary.

Corollaries:

Corollary

The strength Γ_C of a vortex tube is well-defined irrespective of C.

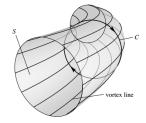
Corollary

This shows that a 'nontrivial' vortex tube of nonzero strength must either take the form of the ring, extend to infinity, or end at the boundary.

Proof.

Else let the vortex tube end at the boundary of the surface S. On ∂S , $\vec{\omega} \equiv 0$; therefore \vec{v} is conservative on ∂S , and

$$0 = \oint_{\partial S} \vec{v} \cdot \vec{n} = \Gamma_{\partial S}$$



One more theorem:

Theorem

In flows with $\nu = 0$, vortex tubes, carried around by the fluid, remain vortex tubes for all time, and maintain their strength.

Parting words:

Whoa Whoa

Reference

Alexandre J. Chorin • Jerrold E. Marsden

A Mathematical Introduction to Fluid Mechanics

Third Edition

