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Introduction

A fluid flow can be described by its velocity field ~v = (u, v ,w), a
3-dimensional vector field which describes the velocity of the fluid,
at each point in space and instant in time.



The Incompressible Navier-Stokes Equations

∇ · ~v = 0

D~v

Dt
= −∇p + ν∆~v + ~F
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I The divergence ∂xu + ∂yv + ∂zw of the velocity field

I In general, the sign of ∇ · ~v < 0 at a point determines
whether the point is (on average) sucking in particles, or
pushing them away

I ∇ · ~v = 0 is called the incompressibility condition; it enforces
the conservation of mass
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∇ · ~v = 0

D~v

Dt
= −∇p + ν∆~v + ~F

I The operator D/Dt, not to be confused with d/dt, is called
the material derivative

I If f is a scalar-valued function, we define
Df

Dt
= ∂t f + ~v · ∇f ;

this is the change in f as it is transported by the fluid

I We define the material derivative of a vector-valued function

coordinatewise; in particular,
D~v

Dt
=

(
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,
Dv

Dt
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Dw

Dt

)



The Incompressible Navier-Stokes Equations

∇ · ~v = 0

D~v

Dt
= −∇p + ν∆~v + ~F

I The operator D/Dt, not to be confused with d/dt, is called
the material derivative

I If f is a scalar-valued function, we define
Df

Dt
= ∂t f + ~v · ∇f ;

this is the change in f as it is transported by the fluid

I We define the material derivative of a vector-valued function

coordinatewise; in particular,
D~v

Dt
=

(
Du

Dt
,
Dv

Dt
,
Dw

Dt

)



The Incompressible Navier-Stokes Equations

∇ · ~v = 0

D~v

Dt
= −∇p + ν∆~v + ~F

I The operator D/Dt, not to be confused with d/dt, is called
the material derivative

I If f is a scalar-valued function, we define
Df

Dt
= ∂t f + ~v · ∇f ;

this is the change in f as it is transported by the fluid

I We define the material derivative of a vector-valued function

coordinatewise; in particular,
D~v

Dt
=

(
Du

Dt
,
Dv

Dt
,
Dw

Dt

)



The Incompressible Navier-Stokes Equations

∇ · ~v = 0

D~v

Dt
= −∇p + ν∆~v + ~F

I The pressure p is a fourth variable to be solved for in the
Navier-Stokes equations

I The gradient ∇p is the direction of fastest increase in
pressure, and large magnitudes of ∇p correspond to sharper
increases in pressure

I Therefore, the equation Dv
Dt = −∇p + [stuff] indicates that

fluid particles accelerate away from regions of high pressure
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I Gravitational effects, the Coriolis force, thermodynamic effects
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Zoom in on the momentum equation:

The equality in

D~v

Dt
= −∇p + ν∆~v

is actually an equality of 3-dimensional vectors. It therefore forms

three equalities of scalar-valued functions:

Du

Dt
= −∂xp + ν∆u

Dv

Dt
= −∂yp + ν∆v

Dw

Dt
= −∂zp + ν∆w

If we assume that all the action is happening on a 2-dimensional
plane (i.e. w ≡ 0 and ∂z [anything] = 0), then the third equation
vanishes identically, and we are left with only two momentum
equations.
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2-dimensional simulation:

2-dimensional WebGL Navier-Stokes simulation

https://paveldogreat.github.io/WebGL-Fluid-Simulation/


Vorticity:

Define the vorticity ~ω = ∇× ~v . Taking the curl of both sides of

D~v

Dt
= −∇p + ν∆~v

gives

∇×
(
D~v

Dt

)
= ∇× (−∇p + ν∆~v)

and this can be checked to be equivalent to the vorticity equation

D~ω

Dt
= (~ω · ∇)~v + ν∆~ω

The first term on the right is the vortex-stretching term.
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Vorticity in 2 dimensions:

In 2 dimensions, ~ω = (0, 0, ∂xv − ∂yu). Thus, the first two
coordinates of the vorticity equation drop out.

If we let ω = ~ω3 = ∂xv − ∂yu, the remaining coordinate now looks

like

Dω

Dt
= (0, 0, ω) · ∇w + ν∆ω

Since w ≡ 0, the vortex-stretching term vanishes, and we are left
with

Dω

Dt
= ν∆ω

The (comparative) simplicity of this equation indicates that we can
expect even more complicated behavior in 3-dimensions.
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3-dimensional examples:

Burgers’ vortex

3blue1brown’s turbulent vortices

https://www.youtube.com/watch?v=XqHQsWrtDPE
https://www.youtube.com/watch?v=_UoTTq651dE 


Vortex tubes:

A vortex line is an integral curve of the vorticity field (it is tangent
to the vorticity field at each point).

A vortex tube is a ‘curvy cylinder’ made up of vortex lines which
have been extended as far as possible.

If C is a closed curve, then define
the circulation

ΓC =

∮
C
~v · d~r .
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Helmholtz’ theorem:

Theorem
If C1 and C2 are curves oriented
the same way about a vortex
tube, then ΓC1 = ΓC2 .

Proof.
Let C1 and C2 be oriented as in the figure. The outward flux of
vorticity through the enclosed region V is∫∫

S∪S1∪S2
~ω · ~ndA =

∫∫
S
~ω · ~ndA +

∫∫
S1

~ω · ~ndA +

∫∫
S2

~ω · ~ndA

where ~n is the outward-pointing unit normal to S ∪ S1 ∪ S2. The
circulation obeys the right-handed rule w.r.t. the normal of S1, and
the left-handed rule w.r.t the normal of S2.
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V
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On the other hand, since S is constructed of vortex lines (integral
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Helmholtz’ theorem (ctd.):

Proof.
Since the boundary C1 of a surface S1 is a closed curve and the
circulation obeys the right-handed rule with respect to the normal,
Stokes’ theorem states that

ΓC1 =

∮
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Putting this all together,

0 =

∫∫
S∪S1∪S2

~ω · ~ndA = ΓC1 − ΓC2 .
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Corollaries:

Corollary

The strength ΓC of a vortex tube is well-defined irrespective of C .

Corollary

This shows that a ‘nontrivial’ vortex tube of nonzero strength must
either take the form of the ring, extend to infinity, or end at the
boundary.

Proof.
Else let the vortex tube end at the
boundary of the surface S . On ∂S , ~ω ≡ 0;
therefore ~v is conservative on ∂S , and

0 =

∮
∂S
~v · ~n = Γ∂S
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One more theorem:

Theorem
In flows with ν = 0, vortex tubes, carried around by the fluid,
remain vortex tubes for all time, and maintain their strength.



Parting words:

Whoa
Whoa

https://www.youtube.com/watch?v=XJk8ijAUCiI
https://youtu.be/EVbdbVhzcM4?t=206 
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